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Abstract: Complex systems do not always behave as we
would like them to. With the complexity of the system, be
it a water treatment plant, an ecological system or a tech-
nical device, the tasks of situation assessment (finding out
what is the actual state of the system) and therapy recog-
nition (finding out what can be done to influence it in a
desirable direction again) require more and more complex
reasoning. This paper proposes a general approach to
computational support for these tasks, namely consistency-
based problem solving. Building upon research in model-
based systems and, more specifically, consistency-based
diagnosis, we have developed a revision and generaliza-
tion of traditional (component-oriented) theories and tech-
niques of diagnosis from first principles. Our approach is
both more general in terms of the class of problems to be
addressed and more specific by proposing and exploiting
a structured representation of system and domain knowl-
edge. A motivating example from the domain of water
treatment will facilitate the presentation of the theory of
consistency-based problem solving and the description of
an implemented reasoning system, the Generalized Diag-
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nosis Engine, G+DE, that performs this kind of reasoning
for a wide range of problem domains.

1 INTRODUCTION: CONSISTENCY-BASED
PROBLEM SOLVING

With increasing understanding of the complexity of envi-
ronmental systems and increasing human intervention and
exploitation, we are confronted with increasingly difficult
environmental problems. Ecosystems do not always behave
as we would like them to. Things “go wrong.”
Taking the perspective of natural resources management

and adopting the goal to protect a certain balance of natural
processes, which is also the precondition of human life, we
have to employ diagnostic reasoning: we have to assess the
situation, potentially finding hidden causes for unexpected
behavior, so that we can find therapies, which might involve
complex interventions.
On an abstract level, this is quite similar to problem

solving in the technical domain, for example, for man-
agers of chemical plants or technicians in an automobile
workshop. Indeed, computer support for diagnostic tasks
has been developed and refined, mostly tailored for dealing
with technical devices, and it appears desirable to extend
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its scope in order to produce useful tools for environmental
decision support systems.
Powerful support to situation assessment and therapy

recognition requires exploiting the available knowledge
about the respective domain of systems. This means a com-
puter system has to represent this knowledge in a formal
way and make it the subject of manipulation by an infer-
ence system. Model-based systems are an approach, where
both tasks mentioned above are viewed as a search for a
suitable model of the respective physical system:

• Situation assessment aims at a model that explains the
available observations about the system’s behavior.

• Therapy recognition tries to identify a model of the sys-
tem under therapy that is compliant with what is con-
sidered a desired behavior or, at least, developing in the
right direction. Besides, this model is to be “reachable”
in a sense to be defined below.

For performing this search in a systematic way, we take
the following perspective: Our knowledge about the respec-
tive domain is a collection of knowledge fragments that
concern the ontology (objects in this domain, their possi-
ble relationships and interactions) and the phenomena that
can occur (human interventions and natural processes, their
conditions and effects). Combinations of these fragments
span the space for the search. A point in this space rep-
resents a certain model hypothesis, and this needs to be
checked for compliance with a set of criteria that are exter-
nal to the model: they have to agree with the given obser-
vations or the goal the system is supposed to accomplish.
This means we need a formal, usually mathematical, model
and an algorithm that uses this model to derive more infor-
mation about the behavior of the system and to check this
against the respective criteria. In this paper, we will focus
on the consistency-based paradigm, that is, finding a model
that is consistent with given criterion. It is worth mention-
ing that there exist approaches to abductive diagnostic rea-
soning, aiming at solutions with higher explanatory power.
(For a discussion of the differences and intermediate forms
see Console and Torasso, 1991.)
Thus, we need a software component that performs

model-based prediction and consistency checking
(Figure 1). The basic question is then which model
hypotheses are to be checked in this way. Since the search
space is usually large, they are not generated by arbitrary
guesses, and do not have to be. Very often, we have a
reasonable starting point for the search which is assumed
to be not too far away from the solution.
In situation assessment, we have certain observations

about the actual system, the objects that constitute it, their
configuration, and measurements about certain quantities,
and we also have certain expectations about what usu-
ally holds for the system, at least in the undisturbed case.
The disturbance has changed the state and potentially the
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Fig. 1. Prediction and consistency check for diagnosis (top) and
therapy recognition (bottom).

structure of the system, but not in an arbitrary and global
way. This is why we expect that we can establish a model
of the disturbed system by applying a restricted set of local
modifications to the initial hypothesis. The candidates for
such modifications are selected from the representation of
our domain knowledge, which lists what can happen to the
system (e.g., component failures in technical diagnosis, dis-
eases in the medical domain, toxic substances, biological
and chemical processes in ecology).
For therapy recognition, the natural starting point is the

disturbed system, and performing the real therapy task will
only be feasible if it can be carried out by a limited num-
ber of interventions that take the system to a healthy state.
Therefore, the two tasks can be seen as an integral whole,
with the result of situation assessment being the starting
point for therapy recognition. In both tasks, we are look-
ing for models of a system that emerge from an initial one
as minimal revisions. As a result, a second software com-
ponent is needed for model-based problem solving: model
revision, which generates revised model hypotheses from
those found inconsistent with the respective criteria using
a library or domain theory (i.e., a repository of potential
model fragments), which has to include possible distur-
bances and interventions.
This establishes the overall process of a so-called

consistency-based problem solver as depicted in Figure 2.
At this stage, we have not imposed particular restrictions
on the form and content of the models or the predictor.
However, a closer look reveals certain requirements.
First, we have to reflect the nature of model hypotheses

and their generation by revision: in human reasoning and
in model-based systems, it involves concepts of the phys-
ical systems and principles in the domain, such as types
of objects and their properties, the structure of systems,
faults, diseases, and human actions. In other words, the
resulting model hypothesis is stated at a conceptual level,
while the model required for prediction and consistency
checking has to be a mathematical behavior model stated in
terms of (differential) equations, constraints or some other
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Fig. 2. The basic cycle of a consistency-based problem solver.

formalism—model revision and prediction happen at dif-
ferent modeling levels (see Figure 3).
Bridging this gap is usually done manually, but has to

be automated in order to perform an automated model
search. This sets the requirement for another software com-
ponent: a model composer, which automatically generates
an executable mathematical model from a conceptual spec-
ification of a physical system using the domain theory.
(Figure 4, a general treatment of automated model compo-
sition, can be found in Nayak [1995], for instance.)
This establishes a strong requirement on the modeling

system:

• Conceptual modeling: The model fragments in the
domain theory need an explicit representation of the con-
ceptual modeling level.

• Compositional modeling: The fragments of the mathe-
matical behavior model need an associated conceptual
description of the conditions under which they are valid
and have to be included in the model, which forms the
basis for an algorithmic solution to the composition of
the overall behavior model.

Another requirement emerges from both the nature of the
task and the kind of physical systems we consider in this
paper. First, the notion of a disturbance implies a significant
deviation from what is considered normal or desirable,
rather than a small numerical difference in certain quan-
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Fig. 3. The gap between the revision of the model at conceptual
level and prediction based on a mathematical model.
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Fig. 4. Bridging the gap by automated model composition.

tities. Second, this is even more apparent for natural and,
in particular, ecological systems whose state can often be
characterized only by partial information and in qualitative
terms, one of the reasons being their spatial and tempo-
ral extension, which does not allow for complete informa-
tion. Third, our knowledge about the relevant phenomena
and processes is restricted and lacking numerical precision.
This results in the necessity for qualitative modeling, which
allows us to perform prediction and consistency checking
even with only partial specification of models, observations,
and goals.
Artificial intelligence, and more specifically, the research

areas of qualitative modeling and model-based diagnosis
have produced theoretical foundations, methods, and soft-
ware systems that address the goals and requirements of
the approach to environmental decision support as out-
lined above. However, at the current stage, both the the-
ory and practical solutions are confined to the special case
of finding component faults in artifacts with a fixed struc-
ture. While this provides some coverage for many industrial
applications, it is too restrictive for others, like process
industries, and even more when natural systems are the
subject or part of it, as in water treatment. In this paper,
we present an extension to the theory of consistency-based
diagnosis and therapy recognition and G+DE, the Gener-
alized Diagnosis Engine, an implementation of this theory,
that provide solutions to these problem domains.
In the next section, a motivating example is used to

illustrate how situation assessment and therapy recogni-
tion can be applied to a simplified real scenario from the
water treatment domain. In Section 3, the fundamental the-
ories and algorithmic implementations of consistency-based
diagnosis for the case of technical devices are presented,
as well as their inherent limitations (and inadequacy for
the example scenario). Section 4 introduces a more general
modeling approach, which is a common abstraction of
both component-oriented and process-oriented paradigms.
Section 5 shortly characterizes the class of solution we
would like to obtain, and Section 6 gives an overview of
an implemented reasoning system that is able to do so for
a large class of models. Finally, some related work, limita-
tions, and perspectives are discussed.
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Fig. 5. A simple water treatment scenario.

2 AN EXAMPLE FROM THE WATER
TREATMENT DOMAIN

In the following, we present a simplified scenario from a
collaborative project in the domain of hydro-ecology and
water treatment carried out with partners in Porto Alegre,
Brazil. The municipal department of water and sewage
in Porto Alegre, DMAE, faces challenges in securing the
city’s water supply from lakes and reservoirs threatened by
an increasing load of organic pollution.
The destabilized ecological equilibrium of the small

Lomba do Sabão leads to unexpected effects for drink-
ing water generated from raw water captured there: In hot
summer days, a distinctly unpleasant metallic taste was
observed in the processed drinking water. Analysis of water
samples confirmed a high concentration of dissolved iron—
above legal and tolerable levels. However, there was no
known source of iron—neither in the treatment plant (cor-
roded pipes could be ruled out) nor in the ecosystem itself.
The situation is shown in a simple diagram in Figure 5.
Discussions between environmental experts resulted in a

surprising hypothesis emerging as the most likely explana-
tion: There is a high amount of solid iron in the sediment of
the reservoir, which was unknown so far. The pH of the bot-
tom layers (hypolimnion) of the Lomba do Sabão typically
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Fig. 6. Situation assessment in the example scenario.

lies in a medium range, and this has almost completely
prevented the redissolving of iron into the water body.
Suddenly, however, the pH has been significantly lowered,
the most likely cause being a local algal bloom triggered
by excessive accumulations of nutrients. The unexpected
acidic conditions that affected the lower water layers have
activated a chemical redissolving process, thus enriching
the water with high concentrations of dissolved iron. The
iron, ascending to the surface layers, was captured with the
raw water intake, and the treatment plant was unable to
handle the unexpected high concentrations of iron received
and an excessive amount remained in the drinking water,
being perceived as an undesirable taste.
After confirming this situation assessment (depicted in

Figure 6), experts discussed possible countermeasures in
order to ensure a clean water supply. Certainly, removal of
the newly discovered sedimental iron was not an option.
Viable alternatives included adding an oxidation agent in
the early stages of the treatment process, so that dissolved
iron could be removed from the captured water. Also, the
application of calcium carbonate as a means of raising the
pH of the water body by artificial alkalization was consid-
ered. For future occurrences of local algal blooms, algae-
cides were discussed as a preventive measure, but mainly
existing long-term plans for the prevention of eutrophica-
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Fig. 7. Available therapy options for the scenario.

tion gained additional support. In the end, the application of
an oxidation agent seemed to provide both minimum side
effects and the advantage of immediate relief. All alterna-
tives are shown in Figure 7.
When designing computational support for the dis-

cussed problem, successful applications of consistency-
based problem solving in component-oriented diagnosis
come to mind. Historically, important theoretical foun-
dations and efficient algorithms have been developed
within this restricted problem domain. As our approach
to generalizing both the theory and the implementations
builds upon fundamental work in this area, we will give
a short overview of consistency-based diagnosis in the
next section.

3 CONSISTENCY-BASED DIAGNOSIS

3.1 The theory

In Section 1, we introduced an approach to model-based
situation assessment and therapy recognition in an informal
way. Now, we will formulate this approach, consistency-
based problem solving, in a formal way and characterize
the work that has been carried out in this area so far, in
terms of theory and implementation. The goal of this step
is to identify the utility and the limitations of the state of
the art with respect to the requirements in our domain.
If we consider our model of the system under considera-

tion (this model might feature a complex inner structure as
presented in Section 4) as a logical theory, MODEL, then
a solution to the tasks involves three basic procedures:

• Behavior prediction, i.e., deriving conclusions about vari-
ables from the behavior model:

MODEL �?
• Consistency check, i.e., identifying whether or not the
model contradicts a certain criterion:

MODEL1∪CRITERION �?⊥

• Model revision, i.e., moving from an inconsistent model
to a consistent one:

MODEL1∪CRITERION �⊥
⇒MODEL2∪CRITERION ��⊥ �

The abstract CRITERION varies during problem solving: it
is given by observations when situation assessment is per-
formed and by goals when the therapy is to be determined.
As pointed out in the introduction, the sources (and the
selection criteria) for the revision step are quite different,
and it suggests itself to cascade the two tasks of situation
assessment and therapy recognition.
Most of the previous work has addressed the task of

consistency-based diagnosis (Dressler and Struss, 1996)
from the following perspective:

• The entities relevant to diagnosis are components Ci ∈
COMPS, which can be associated with a set of different
behavior modes {modei(Ci)}: the correct one, ok(Ci), and
at least one fault mode (possibly with unspecified behav-
ior).

• A system to be diagnosed consists of a given set of such
components that interact in a way determined by the fixed
structure of the system (its blueprint) and are to be scru-
tinized for faulty behavior.

• The result of the diagnosis is an assignment of actual
behavior modes to all these components.

• The criterion for a proper diagnosis candidate is that the
respective mode assignment is consistent with a set of
observations OBS of the actual system behavior.

If we summarize the domain theory and the description
of the structure of the particular system and its parame-
ters as the system description SD as in Reiter (1987), then
diagnosis starts from a point where assuming that all com-
ponents behave correctly contradicts the observations and
the system description:

SD∪OBS∪ �ok�Ci� 	 Ci ∈ COMPS� �⊥�
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The diagnosis procedure is then organized as a search for
revised mode assignments to the components that eliminate
inconsistency:

SD∪OBS∪ �modei�Ci�	Ci ∈ COMPS� ��⊥�

This is the basis for implemented systems that have
started to become part of industrial applications in vari-
ous domains, for instance, cars (Sachenbacher et al., 1998),
gas turbines (Travé-Massuyès and Milne, 1997), and space
crafts (Pell et al., 1996). Researchers in model-based diag-
nosis have also tackled problems in less rigid domains
like software debugging and configuration (e.g., Crow and
Rushby, 1991; Stumptner and Wotawa, 1998). It is worth-
while exploring whether these systems could form the basis
for applications in areas like water treatment and environ-
mental decision support.

3.2 Revisiting the example

However, if we revisit the example introduced in the pre-
vious section, we notice that diagnosis of devices made
up of components in a fixed structure is much simpler
than solving problems in water treatment plants or ecolog-
ical systems. Although components such as pumps, valves,
and pipes are involved in water treatment, it is not their
malfunctioning that is causing the problem. Also it is not
the case that any of the chemical, mechanical, or biolog-
ical processes involved do not perform well. We summa-
rize in what respect the classical theories and systems of
consistency-based diagnosis are too narrow and, as a result,
fail to provide a solution to many diagnostic problems in
the environmental domain, but also in technical applica-
tions (e.g., process industries):

• We could not call iron redissolving or algal blooms a
fault. Natural processes do not break or fail like compo-
nents. This means: The relevant constituents of the sys-
tem do not necessarily have fault modes.

• It is not the case that one of the constituents of our orig-
inal system description can be blamed for the inconsis-
tency with the observations. The reason is additional,
unanticipated constituents, namely sedimental iron and
the algal bloom, which we were not aware of. This
means: A revision of the system description cannot be
confined to a set of given constituents (components).

• Also, for finding an appropriate treatment, changing the
“mode” (or existence) of the given constituents (e.g., by
replacement of a broken component) is not the issue. One
has to find actions that, again, expand the entire system
(e.g., by introducing algicides or an oxidation agent).

• There are no “failures of nature.” Metallic taste is not
a fault, even though we might want to avoid it. A cer-
tain phenomenon may be perfectly consistent with the
observations, while inconsistencies arise only with our

goals and intentions. This means: The classical diagno-
sis task, based on inconsistencies between the model and
the observations, is to be explicitly split into situation
assessment (using the observations) and therapy recogni-
tion (taking the goals into account).

As a consequence, a more general theory of consistency-
based problem solving is needed. We attempt to contribute
to this goal by proposing a revision and extension to
consistency-based diagnosis that preserves the principled
approach while expanding the scope of the underlying mod-
eling paradigms and diagnosis tasks and algorithms. At the
same time, we would like to re-use as much as possible
from advanced consistency-based diagnosis techniques, so
the next subsection is dedicated to these.

3.3 Conflict-driven and dependency-based diagnosis

A closer look at the existing algorithms and implementa-
tions reveals what we can expect to preserve and exploit in
our generalized approach. Obviously, the central question
to answer in model revision is what to revise if a particu-
lar model is found inconsistent. As long as the only result
is that the entire model is inconsistent, revisions appear
quite arbitrary. However, usually it is possible to localize
the source of an inconsistency to some degree. If the starter
of the car does not work, we do not suspect the windshield
wipers, because they do not interfere with this function, and
in the water treatment example, potential parts of the reser-
voir that do not contribute to the water captured for drink-
ing water supply do not have to be inspected. This means
that the starting point for revisions will often be a subset
of the entire model. In component-oriented diagnosis, the
system identifies sets of models of correctly working com-
ponents that together are inconsistent with the observations,
so-called conflicts. Such a conflict states that at least one
of the involved components is not in accordance with its
model of correct behavior. Hence, every valid diagnosis has
to revise correctness assumptions for one component out of
each known conflict. For instance, if two conflicts

�¬�ok�C1���¬�ok�C2���� �¬�ok�C1���¬�ok�C3���
have been obtained, then two diagnoses can be obtained
that are minimal (w. r. t. set inclusion):

�¬�ok�C1���� �¬�ok�C2���¬�ok�C3����
They specify two revisions of the model by switching the
assignment of the behavior mode to components. This way,
the revision works in a focused fashion, driven by conflicts
(Figure 8).
If we combine model revision with the elements to a

solution as outlined in the introduction, namely predic-
tion/consistency check and model composition, we obtain
what is displayed in Figure 9. Again, this reveals a gap:
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Fig. 8. Conflict-driven model revision.

while the contradiction shows up in the mathematical
model, the model revision step requires conflicts (i.e., state-
ments about the conceptual view of the system), for exam-
ple, in terms of component behavior modes.
The intuitive solution is that the system has to keep track

of what conceptual model units underlie a detected discrep-
ancy. The conceptual units were associated with behavior
model fragments in the composition step, and obviously
there is no chance to obtain conflicts unless these associa-
tions are recorded. Secondly, the system has to record the
dependencies of the discrepancy on the various predictions
that contributed to it which in turn are derived from behav-
ior model fragments. This way, the problem solver will be
able to identify the conceptual units that gave rise to a dis-
crepancy, that is, a conflict (Figure 10).
In many systems, both tasks, dependency recording and

conflict generation, are performed by a general purpose
tool, called the assumption-based truth-maintenance system
(ATMS; de Kleer, 1986) or variants of it, as described in
de Kleer and Williams (1987), Struss and Dressler (1989),
Dressler and Struss (1996). This architecture is gener-
ally referred to as the general diagnostic engine (GDE).
There are, of course, a number of diagnosis algorithms that
exploit specific characteristics of the class of devices under
consideration to achieve better performance (e.g., Fattah
and Dechter, 1995; Stumptner and Wotawa, 1997), but we
focus on the general concept here.
Identifying sets of conflicting hypotheses about the con-

ceptual system model as the starting point for generating
model revisions is the general foundation of consistency-
based diagnosis. It is only its use in component-oriented
diagnosis that is very special. We will build on this gen-
eral foundation, which will allow us to even re-use its
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Fig. 9. The gap between discrepancies and conflicts.

implementation, namely prediction/consistency checking
and conflict generation. Obviously, we need a different
modeling formalism including model composition. This is
presented in the next section. Since our example showed
clearly that simply switching behavior modes of compo-
nents does not suffice, a more general kind of model
revision is required and described thereafter. Finally, a rea-
soning system for calculating these revisions is presented,
that builds upon the mentioned GDE algorithm.

4 THE MODELING APPROACH

We follow the principles of structure-to-behavior reason-
ing and compositional modeling and provide a generaliza-
tion of both component-based and process-based modeling
paradigms. For this, we adopt a relevant part of the qual-
itative process theory (Forbus, 1984). For a concise for-
malization of our modeling approach in first-order logic,
please refer to (Heller, 2001). According to this view, the
system model (or system description) consists of two parts:
the domain theory and a situation description. The diagram
in Figure 11 provides an overview and also indicates the
specificity of each section. We briefly discuss each part in
the following.

4.1 Domain theory

The domain theory captures what we know about the
domain, that is, all systems of a certain class (e.g.,
hydrological ecosystems or water treatment plants). We dis-
tinguish structural elements (objects and relations) from
behavior constituents (which might be processes or other
model fragments). The ontology consists of the following:

• Object types, which occur in structural descriptions, for
instance, types of components in a device (resistor, bro-
ken wire), spatially distinguished entities (layers of a
water body, pipes, tanks), etc. Object types can be struc-
tured hierarchically.

• Relations for characterizing “configurations” of objects.
Examples are spatial relationships (contained-in, below),
connectivity of components, etc. Some important proper-
ties of relations (like uniqueness) can be specified.

• Quantities as the basic elements for behavioral descrip-
tions. Multiple quantity types (e.g., with different
domains) can be defined and objects of a given type can
be supplied with a number of associated quantities with
given roles (e.g., the resistance of a resistor, the concen-
tration of dissolved iron in a water tank, etc.).

The domain theory also has to provide a vocabulary for
behavior descriptions and the inferences that derive behav-
ioral constituents from a structural description. It introduces
behavior constituent types. These are physical phenomena,
which are considered to contribute to the behavior of the
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overall system. They can represent basic component laws
(Ohm’s Law, logical-or) or processes like in the qualita-
tive process theory (QPT; Forbus, 1984), or partial behavior
models like in Bredeweg (1991). They occur deterministi-
cally under certain conditions, and their occurrence gener-
ates particular effects.
See the following diagram (Figure 12) for an example of

a behavior constituent type definition. The visual elements
are actually employed by the graphical user interface of the
G+DE prototype described in Section 6.
The diagram elements have to be interpreted as follows:

• Structural Conditions: assertions about the existence of
relations and objects. In the example: solid iron has to be
present (“fixed-in”) the sediment, which is a solid layer
below a water layer. The boxes with the double frames

Domain Theory

Ontology

Behavior Constituent Types

Basic Axioms

Situation Description

Object Types (hierarchy)

Relations (implications, properties)

Quantities (types, associations)

Structural Conditions (SC, objects and relations present)

Quantity Conditions (QC, constraints on quantities)

Structural Effects (SE, objects and relations created)

Quantity Effects (QE, constraints and influences)

Objects (instances)

Relation Tuples (between object instances)

Quantity Value Assignments
system specificsituation specific

domain specific

Fig. 11. Proposed structure of system models.

denote object templates (i.e., a role name and an object
type). The ellipses represent relation templates.

• Quantity Conditions: statements about values of quan-
tities. In the example: the pH of the water layer has
to be below a certain threshold (upper right corner, the
hexagon contains a constraint designator “LESS-THAN-
x”) and the concentration of solid iron in the sediment
has to be positive (lower left corner).

• Structural Effects: creation or possibly even elimination
of objects and relations. In the example: Dissolved iron
will be present in the water layer (the structural ele-
ments with the star symbol denote structural effects). But
note that we encode implications (“there is also � � � ”)
rather than temporal changes (“at a later time there will
be � � � ”)—see below.

• Quantity Effects: can be expressed as restrictions on
variables. In the example: The rate of the redissolving
process (a helper quantity) will increase with the sed-
imental iron concentration and decrease with pH (here
simplified in the qualitative constraint DIV). We also
allow for partially specified effects in the form of influ-
ences as used in QPT. In our case, the concentration
of the dissolved iron will increase proportionally to the
process rate, while the sedimental iron will be depleted
(small boxes with signs).

The abstract form of a behavior constituent type can then
be written as

StructuralConditions∧QuantityConditions
⇒ StructuralEffects∧QuantityEffects

More precisely, we state that for each constellation of
objects satisfying the structural and quantity conditions,
an instance of the behavior constituent is occurring and
imposes the respective effects on the constellation.
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Fig. 12. Example behavior constituent type “iron redissolving.”

Additionally, we include a section for the fundamental
laws that determine the mechanisms of model formation,
how influences combine, and prediction over time (conti-
nuity, integration, etc.). These “basic axioms” cannot be
specified arbitrarily by the modeler but rather represent
the domain-independent laws like the one of behavior con-
stituent occurrence stated just above.
At this point, we make almost no commitment with

respect to the quantity domains (symbolic, qualitative, real,
etc.), the formalism for specifying the quantity effects (con-
straints, differential equations, etc.), and the expressiveness
of structural conditions and effects (e.g., nonexistence of
certain objects as condition or destruction of objects as
a structural effect). In general, conditions and effects are
assumed to be local and compositional. Some requirements
for model formation and prediction will be discussed in
Section 6.

4.2 Situation description

A particular system under consideration is characterized by
its object structure, that is, instances of the object types
and individual tuples of object relations (for instance, the
components and the connection structure of a device). In
the following, we will refer to both objects and relation
tuples as structural elements.
A particular situation of the system is characterized

by quantity value assignments. Dependent on the task
and context, they may represent actual measurements
(e.g., an increased amount of iron in the drinking water),
specification of goals (a certain amount of iron), mere
hypotheses, etc.
This way of modeling (like QPT which can be regarded

as a specialization of it) allows for dynamic changes in
the set of active processes and, thus, distinguishes from
approaches that represent systems as a predefined sequence
of processes that are then considered to possibly fail very

much like components (see e.g. Guckenbiehl et al., 1999).
Unlike the QPT-based work of Collins (1993), our approach
fully supports structural effects and, hence, facilitates diag-
nosis with respect to changes in the (object-related) struc-
ture (e.g., due to unanticipated objects or interactions).

5 CHARACTERIZING SOLUTIONS

It becomes clear that the structure of the system description,
as discussed in the previous section allows for a flexibility
that is far beyond a fixed circuit diagram with components
that might occasionally break. Rather, the dynamics of pro-
cesses suddenly taking effect and ceasing again, as well
as structure being created represent a significantly higher
degree of freedom.
Correspondingly, a diagnosis task does not simply

aim at a mode assignment that is consistent with the
observations—which can be interpreted as situation assess-
ment and therapy at the same time, since replacing compo-
nents is usually the only action available and a system with
all components o.k. will behave according to the (implicit)
goals associated with it.
As we have argued before, the general case requires

mostly two separate steps in finding a system description
that adequately represents the observed behavior (i.e., it is
at least consistent with it) and then looking for one that
is consistent with the (external) goals. Still, for both steps
we can employ consistency-based revision techniques as
presented above. But note two important differences. First,
the search space for a revised system description is not a
finite set of mode assignments, but rather spans structural
changes (additions and removals) alongside value assign-
ments to quantities associated with the currently valid set
of structural elements. Secondly, the set of allowable revi-
sions is different for the two tasks mentioned above: for sit-
uation assessment, structural changes have to be plausible,
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in the sense that the revisions are acceptable explanations
for the observed behavior (e.g., the introduction of sedi-
mental iron is acceptable, while the appearance of a second
reservoir is not). For therapy recognition, the criterion is
whether a change is achievable, that is, whether it can be
brought about by intentional intervention (of course, every
possible action will have to be represented in the domain
theory, e.g., in the form of introducible oxidation agents).
The latter issue brings us to what we consider revisable

in the initial system structure:

• We allow for user-defined assumptions to qualify quan-
tity assignments (such as mode assignments, which was
the only “revisable” in the classical component-oriented
case). Thus, they are marked changeable, as a different
value might be determined to be the only consistent one.

• Assumptions can also be used for the existence of struc-
tural elements. These assumed elements can be called
removable, as their existence might lead to a conflict.

• Finally, certain object types can be named as being intro-
ducible to allow the addition of objects of the respective
type to the system model. This provides the most impor-
tant means for controlling the problem-solving task, since
a more restrictive set of introducibles requires “deepen-
ing” the search for causes. In the example, one could
accept that dissolved iron can appear in drinking water
and, thus, end up with a very simple explanation of the
metallic taste. But excluding dissolved iron from the set
of introducibles will trigger the search for sedimental
iron, as shown in Section 2. Certainly, more sophisticated
means of defining what is introducible can be imagined
(such as confining where an object of a certain type can
be introduced), but we leave that for future research.

On the basis of these defeasible asumptions as well as
introducible elements, one can now define the set of accept-
able solutions:

Definition (Solution): A solution is a minimal consistent
allowable structure in that a maximal set of user-defined
assumptions holds. A structure is defined to be allow-
able, if it contains at least the structural elements spec-
ified by the user as nonremovable (without assumption)
and all other structural elements are either introducible or
a necessary consequence of an occurring behavior con-
stituent (by ways of structural effects).

Obviously, a structure missing necessary structural effects
is not consistent with the laws of behavior constituent
occurrence; therefore, solutions always include all such
effects.
Minimality is understood with respect to set inclu-

sion. Note that we do not use the absolute cardinality
of structural elements present in a solution as a crite-
rion for preferring one solution over another, we just
exclude “unnecessary” or “superfluous” objects from being

included in a solution. “Candidate ranking” is an entirely
different story and is much more complex for the search
space spanned here than it is for mode assignments. A dis-
cussion of the intricate issues involved is beyond the scope
of this paper. In Heller (2001), one can also find a formal-
ization of this characterization in default logic.

6 G+DE—THE GENERALIZED
DIAGNOSTIC ENGINE

While there exist efficient implementations of the diagno-
sis task for the component-oriented case (GDE; see above),
we have seen that the more general framework as specified
within this paper requires a more sophisticated solution. For
once, we have to bridge the gap between conceptual mod-
els and mathematical ones by model composition, and the
much more general modeling language provides additional
challenges as pointed out in the last section.
One of the main problems lies in the inherent nonmono-

tonicity, which is ultimately a consequence of using the
mentioned closed-world assumption to calculate quantities,
which may have effects on the activity of behavior con-
stituents, which in turn might change quantities or even
introduce additional structural elements. This makes imple-
mentations difficult and computationally expensive. How-
ever, for a large class of domain theories, we have been
able to implement a reasoning system, the generalized diag-
nostic engine (G+DE), that employs monotonic reasoning
and a form of constraint satisfaction as implemented by a
classical GDE module.
See Figure 13 for an overview of the system architecture

of G+DE. To the left of the diagram, editors are depicted,
where the user can graphically specify the domain the-
ory, the system structure, and quantity specifications for
the system at hand. The scenario editor will also be used
for feedback of the completed structure, of predicted quan-
tity values, and for an interpretation of diagnosis candi-
dates (see below). The following sections will discuss the
most important design decisions for the modules calculat-
ing these solutions (to the right of the diagram).

6.1 Instantiation and activity

In the following, we consider the case where we have only
positive structural effects, that is, objects (and relations) are
only generated, but not destroyed, and only positive struc-
tural conditions (i.e., no conditions in terms of nonexistence
of objects or relations). If we assume, furthermore, that we
can determine the identity of any generated object (e.g.,
using some relation like spatial locatedness by “contained-
in”), then we can monotonically construct all objects that
can possibly be generated by any instance of a behavior
constituent, without taking the quantity values into account.
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Fig. 13. Abstract architecture of G+DE.

This corresponds to the common distinction between
“instantiation” and “activation,” as described in the qualita-
tive process theory (Forbus, 1984), which mentions struc-
tural effects, but does not specify exactly how they are
treated. We decided to use this mechanism to separate the
structural conditions and structural effects from the quan-
tity conditions and quantity effects.
Thus, in an instantiation phase, the initially given sys-

tem structure is completed by all potentially active behavior
constituents and their respective structural effects (i.e., for
each set of objects matching the structural conditions of a
behavior constituent type, we create an instance of a behav-
ior constituent plus all objects and relations created in the
associated structural effects). This happens in the module
Structural Completion in Figure 12.
Together with the Constraint Net Generation, this cor-

responds to the model composition mentioned earlier. The
fundamental idea of instantiation versus activation is that
later, when we take quantity values into account, instan-
tiated behavior constituents can be determined to be in
an active or inactive state depending on their quantity
conditions. This breaks the nonmonotonic reasoning cycle
described above, or rather prepares a model for a constraint
satisfaction algorithm to find all solutions defined in the
nonmonotonic framework.
Guard variables (representing the activity of behavior

constituents) and constraints ensure that only structural
effects of active behavior constituents become effective—
which can in turn trigger further behavior constituents.

Thus, since structural elements that have been intro-
duced might not actually be created by active behav-
ior constituents, they are guarded by a boolean variable,
representing whether they are actually present or not. To be
precise, we also use a secondary set of guard variable for
behavior constituents that indicates whether all their struc-
tural effects are actually (instead of just potentially) ful-
filled. Similarly, the quantity conditions can be compiled
into a set of constraints so that the activity of a behav-
ior constituent can be made dependent of the values of
specified object quantities. The quantity effects require a
slightly more complex solution, since their effect is also
enabled or disabled by the activity of the behavior con-
stituent they belong to. Conditional constraints will ensure
this. A simple construction with an intermediate variable
will also disable all influences generated by the quantity
effects.
Using the example (iron redissolving) from above,

Figure 14 shows the generated fragment of the constraint
network for a single instance, including all guard variables.
All described constraints and influences will have to be
created for each instantiated behavior constituent. Further-
more, influences (there are still some denoted in Figure 14)
will have to be “resolved”: For the complete model, the
net effect of all specified influences can be described as a
constraint, usually an additive one. Here, the assumption,
that the known model is complete is actually used, and this
is why we record these important "closed-world assump-
tions" (CWAs; see below for exact semantics). All of this
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Fig. 14. Example constraint network fragment for an instance of iron redissolving.

happens in the Constraint Net Generation module, yield-
ing a constraint model that can be used for prediction and
consistency checking.
For this task, we employ a flexible implementation of

a classical General Diagnostic Engine, which does not
only provide predictions, but also minimal diagnostic can-
didates in terms of assumptions occurring in conflicts; this
is a step beyond simple conflict detection, as also min-
imal “hitting sets” for multiple conflicts are calculated.
Assumption tracking or dependency recording, as described
in Section 3.3 is handled partly in model composition, as
structural assumptions (“removable elements”) are included
in the model, but the assignment of their existence variable
to "true" is labeled with the respective assumption, as are
usual (“changeable”) quantity assignments. Thus, all user-
defined assumptions are included in the quantity specifica-
tions. Only closed-world assumptions are associated with
certain constraints (from influence resolution, see above),
and the predictor is equipped to record them, whenever the
constraint is used, as this is part of classical consistency-
based diagnosis.
Note that prediction in the general sense will now

also “switch” on or off behavior constituents and make
structural elements appear or disappear. This information
will be made available in the form of quantity specifica-
tions as well.
Finally, the GDE module will be able to determine

whether the provided model was consistent, which means
that there is a solution to the given tasks within the instan-
tiated search space. The precise extension (in terms of

objects, relations, and quantity values) can be extracted
from the quantity specifications.

6.2 Model revision

In all other cases, a set of candidates (i.e., minimal sets
of assumptions) to be retracted are generated. While this is
simple for the propositions concerning structure and values
marked as retractable, the real challenge lies in the closed-
world assumptions recorded during resolution and collected
whenever a summary resolution constraint appears in a
inconsistency.
We mentioned above that we use this assumption about

the completeness of the known model whenever we col-
lect all (known) influences on a given variable. So we can
label the particular occurrence of the assumption with this
variable. Now, putting it precisely, the conjunction of all
these “local” CWAs represents the assumption that there
is a (minimal) solution within the generated search space.
Conversely, the negation of a single CWA represents the
necessity for an additional influence on the given variable,
which will require additional structural elements to be part
of a solution.
Now, it is important to mention that we take the domain

theory to be fixed and complete. This means that any phe-
nomenon providing an additional influence will have to be
described there in the form a behavior constituent. Since
we also have information on the type of quantity and even
the type of object it is associated with, we have a reason-
ably good starting position for a backward search through
the domain theory.
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It is the task of the Model Revision module to find a min-
imal structural augmentation that will instantiate a behavior
constituent generating the required additional influence. Of
course, such a hypothesis has to be tested once more by
producing the complete model (including all potential side
effects of the revision), and checking it against the quantity
specifications. This is indicated by the backward arrow in
Figure 12. There are two motivations for a loop here: On
the one hand, many different revisions might have to be
assessed until a consistent one is discovered. On the other
hand, an inconsistent revision might simply be "not yet"
complete and require further completion by extending the
model.
A complicated issue is ensuring the minimality of aug-

mentations: it is not easy to focus the search, so that a
smaller “deeper” set of causes bringing about the same
changes and, thus, removing the inconsistency, can be
excluded. In any practical application, one will probably
have to rely on additional (maybe heuristic) knowledge
about how to select useful model revisions.

7 DISCUSSION AND PERSPECTIVES

The described approach to model-based problem solving
builds upon the strong logical foundations of component-
oriented consistency-based diagnosis, while overcoming its
specific conditions and limitations. This should help to
expand the scope of applicability of model-based support
for different domains and tasks.
Collins (1993) is also aiming at extending classical diag-

nosis to (QPT) process models. He proposes an analo-
gous distribution of the global closed-world assumption
and is using an abductive backchaining algorithm to gen-
erate explanations implying the violation of the local
closed-world assumption. But since he is not considering
structural effects of processes, structural revisions are taken
as primitives.
The presented G+DE architecture has been implemented

in a prototypical fashion. The architecture (see the overview
in Figure 13) consists of a set of flexible reasoning modules
with a powerful graphical user interface. We have success-
fully applied it to small scenarios from the water treatment
domain, including the example described in Section 2, as
well as a number of tasks from medical theory validation
(secondary hypertension phenomena) and problems in elec-
trical circuits that are beyond simple component-oriented
diagnosis, such as thermal interaction and exploitation of
structural aggregation. See Heller (2001) for an overview.
Of course, a number of optimizations for G+DE, especially
in guiding and focussing the search for revisions, will be
necessary for real-world applications.
Future work also concerns the task of therapy recogni-

tion. Currently, goals are formalized mainly in the form

of “deviations” (i.e., qualitative expressions stating that the
desired value of a certain quantity lies above or below the
current value). When allowing only achievable actions as
introducible candidates, the diagnostic algorithm can pro-
vide simple therapy proposals.
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