
In: Working Papers of the 13th International Workshop on Principles of Diagnosis (DX02), Semmering, Austria, 2002 

 

Model-based Tools for the Integration of Design and Diagnosis into a 
Common Process - A Project Report* 

 
 

P. Struss1,8, B. Rehfus2, R. Brignolo3, F. Cascio4, L. Console5,  
P. Dague6, P. Dubois7, O. Dressler8, and D. Millet9 

 
1Technical Univ. of Munich, 2DaimlerChrysler AG, Stuttgart, 3Magneti-Marell i Spa, 4Centro Ricerche Fiat; Torino, 

5Universita di Torino, 6Université de Paris Nord, 7Renault, Paris, 8OCC’M Software, Munich, 9PSA Peugeot Citroën, Paris 
struss@in.tum.de, struss@occm.de 

 
 

                                                        
*  This work is supported by the Commission of the European Union (Project no. G3RD - CT199-00058) 

 
Abstract 

The growing importance of on-board diagnosis for 
automobiles demands for a close integration of diagnostic 
tasks in the entire design process. This report describes 
work carried out to date within the European project 
„Integrated Design Process for onboard Diagnosis„ (IDD). 
It presents an analysis of the current design process and the 
model of a new process which allows for a better 
integration of diagnosis related tasks, such as 
diagnosability analysis, failure-modes-and-effects analysis 
(FMEA), on-board diagnosis design, in the overall design 
process of mechatronic subsystems. We then discuss in 
what way model-based technology can provide tools to 
support the actual integration and, in particular, present an 
approach to model-based diagnosabil ity analysis.. 
 

Introduction 
The importance of diagnosis in onboard automotive 
systems is constantly growing together with the 
complexity of the systems. The average dimension of the 
diagnostic code inside a modern electronic control unit 
(ECU) is now more than 50% of the whole code. At 
present, there is no correspondence between such an 
important role of diagnosis in onboard systems and a 
similar role that diagnosis could play in the design 
process chain. 
The correct way of dealing with this situation is to re-
organize the design and development chain so that the 
diagnosis is no longer the last task in the design chain. 
This goal provides an opportunity and challenge to 
model-based systems technology for several reasons. 
First, in early design stages, when physical prototypes of 
the designed system are not existing, diagnostic reasoning 
can only be based on a model. Second, since the design is 
subject to revisions, the adaptation of diagnostics and 
fault analysis to such revisions has to happen 
automatically or, at least, without major efforts. Finally, 
the existence and use of (simulation) models for the 
development and validation of control design can provide 

a basis for the application model-based diagnosis 
technology.  
The European Fi fth Framework project „ Integrated 
Design Process for onboard Diagnosis“  (IDD) pursues the 
goal to formalize and standardize the diagnostic design 
process, and to enable the introduction of diagnosis early 
in the chain. This methodological goal has to be 
combined with another important objective: giving to the 
designers a set of model-based tools that can help them in 
evaluating and understanding the effects of each choice 
on the system being designed. The IDD project was 
started February 2000 with a duration of three years and 
involves both industrial and academic partners: Fiat CRF 
(Torino), Magneti-Marelli SpA (Torino), PSA, Peugeot 
Citroen (Paris), Renault (Paris), DaimlerChrysler AG 
(Stuttgart), OCC’M Software GmbH (München), 
Universita di Torino, Université de Paris Nord, XIII, and 
Technische Universität München. 
Except for the approach to diagnosability analysis, this 
paper does not aim at presenting new model-based 
theories or techniques, but rather focuses on describing 
the work and intermediate results of this project in order 
to increase the awareness of this challenge in the field of 
model-based reasoning. Therefore, we start with a 
description of the current design process and its 
deficiencies. Based on this, a new design process is 
proposed in section 3 that introduces the exchange of 
models as the major medium for a closer interaction 
between control design on the one hand and failure-
modes-and-effects analysis (FMEA) and diagnostic 
design on the other hand. Section 4 outlines the 
technological and software basis chosen by IDD to  
develop the tools that are required to realize this 
integrated process. We then present our approach to 
model-based diagnosability analysis. Finally, we outline 
the remaining work in the project and list the guiding 
applications which will be used in the project for 
validation of the tools. 
 



Analysis of the Current Process of Design 
and Generation of Diagnostics  

The current processes of each industrial partners have 
been investigated with a focus on the integration of the 
diagnostic process and diagnosis-related processes into 
the whole design process of mechatronic subsystems. 
Starting from these results a „merged process“  has been 
developed that is based on the similarities recognized, 
ignoring details and small differences. The abstraction of 
this process will be used as a comprehensive reference for 
the current design processes. This analysis and its 
consequences are presented in more detail in [Brignolo et. 
al. 01]. 
In the framework presented here we consider especially 
processes related to mechatronic subsystems, such as air 
conditioning or engine control systems. These subsystems 
involve ECUs as centers of control and diagnostic 
functions and the physical system, comprising mechanic, 
hydraulic, electric components. Following [Bortolazzi-
Steinhauer 00], Fig. 1 summarizes the overall design, 
isolating the different phases and showing in which way 
the process for a subsystem, which is the most interesting 
one in this project, is related to the entire process. 

Hardware
Development

Software
Development

EE -
Requirements

A-Sample
B-Sample

C-Sample
D-Sample

Behaviour
Modelling &
Simulation

Functional Prototyping

Diagnostics - Onboard

Entire 
Process TechnologyStrategy ProductionIntegration

Subsystems
Requirement
Specifications

Functional 
Prototyping

Product
Development

Maturity
Optimi-
zation

Start-Up
Functional
Integration

Product Development

 

Figure 1 Entire Process and subsystem process, 
overview 

 
During the ‚strategy phase‘  a first conceptual framework 
for the new product is worked out, the ‚ technology phase‘  
targets the concept approval, the ‚ integration phase‘  
focuses on the realization of the new product by taking 
into consideration technical feasibil ity and manufacturing 
aspects, and, finally, the ‚ production phase‘  ensures the 
industrial mass production with the correct requirements 
of quality. 
The IDD approach focuses primarily on the Technology 
phase which leads to the first almost complete prototype, 
but takes into account that a good amount of diagnostic 
development is performed at present in the Integration 
phase, as illustrated in Figure 1. 

From an abstract point of view, the reference process, 
which is focussed on the functional prototyping within the 
technology phase, can be modeled as a set of nested 
loops: 
• Specifications loop: Definition of requirements, 

specifications and implementation of the validated 
result. In this phase also feedback from after-sales 
and customers may be involved. Further 
requirements may be added depending on mock-up 
observations. 

• Outer design loop: Design of the whole system 
prototype, involving the definition of the overall 
structure of the system, i.e. the selection of the 
physical (mechanic, hydraulic, electric) components 
and decisions about the overall layout of the system. 
This loop terminates when the prototype meets all the 
requirements and speci fications. The core activities 
are design of the system including its control and 
diagnosis, comprising a series of inner design loops, 
and the hardware development of the physical 
system, which runs in parallel. 

• Inner design loop: Design of the ECU-based control 
system and components. Each iteration involves the 
design of the control algorithms, FMEA, diagnostic 
development, implementation of the ECU (HW and 
SW) and verification of the algorithms, as shown in 
Figure 2. The verification step at the end of the first 
iterations is performed using models (software/ 
hardware in the loop), whereas, later, the physical 
system is used. Depending on the achieved results, 
there are several iterations, each one of them 
producing an advanced prototype. 

 

Next
Prototype

Selection
of Comps
and their
layout

Control Design (SW + HW)

Control Design Simulation/
Verification

Integration/
Verification

ECU
SW +HW

FMEA
Onboard Diagnosis Design

Algorithms Verification

 

Figure 2 The reference process,  
one iteration of the inner design loop 

Three problem areas in the reference design process have 
been identified as the essential ones with respect to a 
better integration of the diagnostic tasks, mainly in the 
inner and the outer design loops. 
The first problem concerns the interaction between the 
diagnosis design process and the FMEA generation (cf. 
upper part of Figure 2). 



• FMEA and generation of onboard diagnosis are 
separated and sequential tasks. 

• Only few tools support the information extraction 
process needed for the FMEA, e.g. simulating the 
consequences of faults or studying interactions 
between faults. Thus, a lot of work is left to the 
experience and sensibili ty of the people that perform 
FMEA. 

The second problem area concerns the interaction 
between FMEA and the development of diagnostics, and 
the development and design of control algorithms of the 
system (cf. Figure 2). 
Currently, these are two substantially separate tasks, 
despite the fact that there are important 
interdependencies. Examples for possible interactions are: 
• a change of the control algorithm may turn a physical 

component, that was not very essential before, into a 
critical one and, hence require additional diagnostics, 

• a change of the control algorithm promotes the 
masking of certain faults that were detectable more 
easily before. Again, additional diagnostics have to 
take this into account, 

• a change of the diagnostics aiming at enhancing 
diagnosabil ity may exploit additional signals, which 
may possibly improve control, as well. 

As a consequence, requirements and constraints arising 
from one of these tasks can be dealt with by the other 
ones only in the next inner design loop, i.e. changes in the 
design of control algorithms can have impact on FMEA/ 
diagnosis only during the next inner design loop and vice 
versa, thus causing additional iterations and time delay. 
The third problem area concerns the relation between the 
design of diagnosis and component selection and layout 
definition (cf. left-hand part of Figure 2). 
The problem here is, that currently the component 
selection task is external to the inner design loop. As a 
consequence, for instance the choice or placement of 
sensor is often not optimized with respect to diagnosis 
purposes, or, if later changes are made, additional (outer 
and inner) design loops are needed that cause delays. 
An improvement could be reached by performing a 
comparative analysis (‚what-if-analysis‘ ) inside the inner 
design step and the integration in the early phases of 
control and diagnostic development. Thus, part of the 
component selection task is moved inside the inner design 
process, and, in particular in the early phases of the inner 
design loop, it is possible and cheap to modify component 
choices, e.g. sensors, regarding type, sensitivity or 
placement and to immediately explore the impact on 
control generation, FMEA, diagnosabil ity analysis, and 
diagnosis generation.  
 
 

The New Process 
Based on this analysis of the reference process and the 
outlined improvements, we propose a frame for a new 
process which is closely connected to a new tool 
architecture. 
In summary, the framework for a new process has to 
satisfy the requirement that in the inner design loop of the 
process, the designers (the di fferent experts involved in 
the design) should be supported in performing different 
activities in an interleaved way: 
• design of the physical system, 
• design of control algorithms, and their simulation 

(for quantitative analysis), 
• generation of the FMEA of the designed system  
• analysis of the diagnosability, i.e. investigation which 

faults are detectable and discriminable from each 
other, 

• derivation of on-board diagnosis (OBD) software for 
the system, 

• comparative analysis on the current design (physical 
system and control), i.e., analysis of the 
consequences of applying changes to the design both 
from the control and diagnosability point of view, 

• comparative analysis of different design alternatives. 
Thus, designers and decision makers are supported in the 
process of evaluating different designs and in making 
choices about the best design of a system. 
• Such a tight integration of different activities and the 

aim to perform them concurrently require the fast and 
reliable exchange of information about any changes 
in the design introduced by any of the activities. This 
is why we propose that the model of the system 
being designed must play a central role in the new 
process, as indicated by Figure 3. 

• The aims to update FMEA, diagnosabil ity analysis 
and OBD generation quickly after a change and to 
consider different design alternatives in parallel 
establishes the requirement that these tasks can be 
effectively supported or automated by computer tools 
based on the model, i.e. they have to be model-based 
tools. 

Selection
of Comps
and their
layout

FMEA
generation

Control Design (SW + HW)

OBD- 
generation

Control Design Simulation/
Verification

Integration/
Verification

ECU
SW +HW

Models

Diagnosability
Analysis

qualitative

quantitative

Models
library

Next
Prototype

 

Figure 3 Frame for the new design process 



Software Support for the New Process  
Accordingly, the actual goal is to provide a new set of 
functions for supporting the designer, which are realized 
as ‚software plug-ins‘  added to the existing software tools 
for design. Within the scope of IDD, we are considering 
three plug-ins: 
• tools for diagnosabil ity analysis 
• tools for supporting the FMEA generation (cf. [Price 

98]) 
• tools for supporting the generation of onboard 

diagnostics (see e.g. [Bidian et al. 99], [Cascio et al. 
99], [Sachenbacher-Struss-Weber 00]). 

These tools rely on model-based systems and wil l be 
based on a common set of models and a common model-
based diagnostic system core. 
The new process and the respective tools should be 
integrated or combined with the simulation tools, that are 
currently used for the design of control strategies and 
typically based on quantitative models. In IDD, this is 
Matlab/Simulink. This requires software that transforms 
the models created in these environments into qualitative 
diagnostic models that form the basis for the model-based 
tools.  
Figure 4 summarizes the overall architecture of the new 
design support system . 

Model transformation

Qualitative
diagnostic model

Onboard - Diagnosis
Software

Generation Tool

Diagnosabilty
Analysis Tool

FMEA
Support Tool

Numerical model
(quantitative)

Control
Generation Tool

Modeling and
Simulation Tool

Design
Tool

 

Figure 4 Tools architecture for the new process 

A challenge lies in providing 
• a common software platform with components that 

are re-usable in different contexts, and 
• the harmonization of models used for different tasks. 
The latter is ideally to be achieved by automated 
transformation routines. In particular the automated 
transfer of traditional quantitative models (used e.g. for 
simulation and control design) to qualitative models 

allowing for automated FMEA and fast, i .e. real-time, on-
board diagnosis, is a central target. If indeed successful, 
the re-use of existing model fragments for different tasks 
will reduce l ife cycle costs by a significant amount. 
IDD envisions three types of application settings: 
• an integrated toolbox with its own graphical user 

interface and storage of models. A component-
oriented ontology has been chosen to best address 
modeling requirements in the automotive domain. 

• a variety of plug-ins to industry-adopted existing 
tools. In IDD, we have chosen MatLab/Simulink. 
Models will  possibly be stored with these tools and a 
specific graphical user interface wil l be l imited, if 
existent at all. The plug-ins provide additional 
functionality, namely diagnosability analysis, FMEA, 
and the transformation of design information 
captured by the Matlab/Simulink model. 

• the (on-board) processing scenario for dedicated 
applications such as diagnosis and monitoring. They 
are dedicated to a particular variant of a device. A 
diagnosis and monitoring application on a ECU is a 
typical example. 

The IDD toolbox and plug-ins will  be running on 
Microsoft Windows. Therefore, COM (component object 
model) was chosen as a protocol for the interaction of 
(binary) components. All the engines, transformers, etc 
are implemented obeying this standard. This allows for 
the re-use of functionality in different contexts, and, in 
particular, the three different application settings. The 
second cornerstone is given by the use of XML (extended 
markup language) for describing data in a uniform and 
exchangeable way. Many of our software components 
take XML documents as input and produce such 
documents as output. 
COM and XML allow us to build task-related 
applications that are constructed from components which 
themselves are aggregated from even more basic 
components. The components in the layer directly under 
the application level we call engines, our third 
cornerstone. So, there are (re-usable COM) components 
that encapsulate a diagnosis engine, an FMEA engine, a 
predictive engine, a transformation engine, etc. An 
important consequence of the choice of COM, XML, and 
engines is that the resulting architecture is an open one, 
open at any desired degree down to the level of individual 
methods of low level objects. 
At the component level, the IDD consortium has chosen 
OCC’M’s Raz’ r [RAZ’R 02] as a basis for 
implementation. It provides state of the art model-based 
systems software packaged into COM-components and 
supplied with XML-interfaces. This allows for further 
extensions as needed by the consortium requirements. 
These components include 
• an ATMS (Assumption Truth Maintenance System) 

which provides fast consistency checking and 
handling of time. While sti ll adhering to the basic 



framework of assumption-based truth maintenance 
[de Kleer 86], the employed technology has changed 
substantially making possible the implementation of 
on-board systems meeting real-time requirements 
([Sachenbacher-Struss-Weber 00]). 

• a constraint-based predictive engine which allows 
to l imit the computational efforts by specifying 
appropriate foci of attention. 

• a model compiler which produces system 
descriptions (XML documents) suitable for 
processing by various engines. For representing 
constraints, a data structure similar to ordered binary 
decision diagrams (OBDD), but also suitable for 
direct constraint processing is used as a compact 
representation [Bryant 92]. 

• a diagnosis engine which accepts a system 
description and a continuous stream of observations 
(measurements) as the input and produces an 
assessment of the current situation by listing the best 
candidates for diagnosis.  

• The model transformation engine is central and 
touches on still open research questions. Therefore, it 
is a main subject of the consortium’s current 
activities. As already pointed out, automated model 
transformation is required to obtain qualitative 
models. Behavioral and structural descriptions are 
extracted from numerical models (developed in 
Matlab/Simulink), converted to qualitative models 
represented in XML form and possibly transformed 
into more abstract descriptions through a process 
called task-dependent model abstraction 
([Sachenbacher-Struss 01]). The foundations of one 
of the implementations and a critical discussion of 
the practical experiences are presented in [Struss 02]. 

In the following, we discuss the foundations for the 
diagnosability analysis engine, that forms a specific 
contribution of the project, in a little more detail. 

Diagnosability Analysis Engine 
Diagnosabil ity analysis is expected to answer two 
different types of questions: 
“For a particular design and a chosen set of sensors, 
determine: 
• Fault detectability, i.e. whether and under which 

circumstances  the possible  faults considered can be 
detected (by the ECU) 

• Fault (class) discriminability, i.e. whether and 
under which circumstances the ECU is able to 
distinguish different classes of faults.”  

The second question is a generalization of the fault 
identification task (“Determine the present fault mode 
unambiguously”). This generalization is motivated by on-
board diagnosis requirements: full fault identification is 
usually not possible and also not required for on-board 
purposes, since there is a l imited set of possible recovery 
actions that can be performed by the control unit and 

which are to be selected dependent on the general type of 
fault and its severity rather than the individual fault. For 
instance, only certain critical faults may require 
immediate shut-off of the engine while others allow 
continued operation possibly under certain limitations.  
Also off-board diagnosis is appropriately characterized as 
fault class discrimination where the classes comprise the 
faults of the various smallest replaceable units. More 
generally, diagnosis is usually a discrimination task 
whose goal is defined by the available “ therapy” actions. 
Discriminabili ty is the fundamental task, because 
detectabili ty can be formulated as discriminabili ty from 
the normal behavior. 
Although the ultimate goal is to discriminate classes of 
behavior modes from each other, the analysis has to based 
on the discriminabil ity of each pair of individual faults 
taken from any pair of classes, which is unfortunate from 
a computational point of view. 
In our framework, (fault) behavior modes are represented 
as finite relations, and discriminability analysis becomes 
the task of computing the observable distinctions between 
two relations. So, let Vobs be the set  of observable 
variables. In an on-board situation, this corresponds to the 
set of actuator and sensor signals. Since we want to 
characterize the situations under which detection or 
discrimination is possible, we introduce a set of variables 
Vcause that are exogenous or  “causal “  variables w.r.t. the 
physical system (i.e. the subsystem excluding the ECU). 
This set includes the actuator signals but also other 
quantities that influence the behavior of the physical 
system. Some of the latter may be observables, e.g. the 
atmospheric pressure, while other are not (directly) 
measurable, such as the load. Since on-board diagnosis 
can rely only on what is observable to the ECU, we 
define: 
 Vo-cause =Vobs  ∩  Vcause 
and 
 Vobs\cause = Vobs \ Vcause 
 

as well as the respective projections, PROJobs, PROJo-cause. 

The abstract example in Figure 5 will provide an intuition 
about possible  answers to the discriminabil ity question. 
The vertical axis represents the observable causal 
variables and the horizontal axis the remaining  
observables. There may be many unobservable variables, 
but the shown projection to the space of observables is all 
that matters. 
Two different fault modes ( or, more generally, behavior 
modes) are represented by two relations. As il lustrated by 
the figure, we can distinguish three different cases: 
• In the upper section the relations cover each  other, 

i.e. for any causal stimulus in the projection of this 
intersection area, the observable set of consistent 
tuples for the two behavior modes are the same, and, 
hence, they cannot be discriminated from each 
other. 



• In the lower section, they are totally disjoint, i.e. any 
of the respective causal inputs always leads to 
different system behavior and, thus, 
deterministically discriminates between the two 
modes. 

• For all other causal inputs, the two modes can 
possibly be discriminated,  because the actual 
response of the system may be outside one of the 
relations, but is not guaranteed to. 

 

Vo-cause

Vobs\cause

Not discriminable
(ND)

Discriminable
(DD)

Possibly discrim.
(PD)

 

Figure 5 Three categories of discriminability of two 
behavior modes 

With this translation of the task to the analysis of 
relations, we can also support our previous claim, that, in 
general, a pairwise comparison of individual modes of 
required to determine the discriminabili ty of classes of 
modes. Consider the trivial example of one inverter with 
two mode classes: 
 C1 ={ output-stuck-0, output-stuck-1} , 
 C2 ={ shorted, ok} . 
Figure 6 a and b display the four faults in the observable 
space i, o, grouped in the two classes.  
 

i o

1

0

0 1a)

1

0

0 1

i

o

i

o

output-
stuck-0

output-
stuck-1 ok shorted

b)

 

Figure 6 Behavior classes of the inverter for fault 
classes C1 (a) and C2 (b) 

 

Obviously, the faults are pairwise discriminable, and, 
hence, so are the two classes of faults. However, i f we 
would try to represent each class as the disjunction of its 
modes and associate with it the union of the respective 
relations, then both of these class relations cover the 
entire behavior space and are not distinguishable. The 
deeper reason is that a fault class represents more than a 
(exclusive) disjunction of modes. We also make a 
persistence assumption, namely that one particular mode 
occurs in all inspected situations (i.e. for all inputs). 
Before we give formal definitions and computable 
expressions for the  concepts, we introduce one last 
element: operating conditions. This reflects the common 
practice of distinguishing between ranges of internal or 
external quantities that result in qualitatively different 
behaviors and are often reflected by different states of the 
system and its control. Examples are engine idle, clutch 
engaged, cold engine, brake pedal pushed.  
Often, the analysis of fault effects and diagnosability can 
be restricted to certain operating conditions and is futi le 
for  others. For instance, one may not be extremely 
interested in the detectability of a fault in the air intake 
system under conditions where the engine is not running 
(one has to be cautious with such restrictions, though, 
because firstly, there may be a requirement to perform 
fault detection beforehand, such as checking the 
operability of the airbag system or the ABS, and 
secondly, a broken component could affect operating 
modes in which it is not intended to be active). 
In our approach, an operating condition has to be 
expressed as a constraint on a subset of model variables. 
Often, but not always, they wil l refer to exogenous 
variables such as the angle of the accelerator pedal or air 
temperature, and typically, but not exclusively, they are 
observables (the load, for instance, is not directly 
observable). 
In most cases, the constraint that defines an operating 
condition wil l be a conjunction of restrictions on variable 
values to some interval or state like temperature>120°C 
or ignition = ON. 
Restricting the analysis to certain operating conditions 
then boils down to computing the intersection of a 
behavior relation with their respective constraints. 
 
Definition 1 (Discriminability of behavior modes) 

Let MODELfault1, MODELfault2 be the behavior 
relations of two modes,  
OPCi an operating condition,  
and  
SIT⊂ DOM(VO-CAUSE)  
a non-empty relation on the observable causal 
variables. 
For OPCi and SIT, two faults are called 
- not discriminable, written 

ND(fault1, fault2, OPCi, SIT), 
iff 



(i)      SIT ⊆ PROJo-cause(OPCi) \ PROJo-cause  
(PROJobs (MODELfault1 ∩ OPCi)\  
   PROJobs     (MODELfault2 ∩ OPCi) 
∪ PROJobs (MODELfault2 ∩ OPCi)\  
      PROJobs (MODELfault1 ∩ OPCi)) 

- deterministically discriminable , written 
DD(fault1, fault2, OPCi, SIT), 

       iff 
(i i)  SIT ⊆ PROJo-cause(OPCi) \  

PROJo-cause  (PROJobs (MODELfault1 ∩ OPCi)  
                 ∩ PROJobs (MODELfault2 ∩ OPCi)) 

- possibly discriminable , written 
PD(fault1, fault2, OPCi , SIT), 

iff 
SIT ⊆ PROJo-cause(OPCi) \  (SITND ∪ SITDD), 

where SITND  and SITDD are the maximal relations 
that satisfy (i) and (ii), respectively. 

 
These definitions characterize the three cases discussed 
above w.r.t. Figure 6 in a way that can be computed by 
operations on the extensional constraint representation 
generated by the model compiler. 
Based on the discriminability of modes, discriminability 
of fault classes can be defined and computed. 
 
Definition 2 ( Discriminability of mode classes) 

Let FCj ={ faulti,j} , j =1,2 be two fault classes and 
OPCi an operating condition. Let furthermore  
SIT-SET = { SITkl}  ⊂ P(DOM (Vo-cause))  
be a set of non-empty relations of observable causal 
variables. FC1, FC2 are called 
- not discriminable, written 

ND(FC1, FC2, OPCi) 
 iff there exists a pair of modes that is completely non-

discriminable: 
∃ fault1k  ∈  FC1    ∃ fault2l  ∈  FC2 

      ND(faultlk, fault 2l,  OPCi, PROJo-cause (OPCi)) 
- deterministically discriminable, written 

ND(FC1, FC2, OPCi, SIT-SET), 
 iff each pair of modes is deterministically 

dicriminable for some element of SIT-SET: 
∀ fault1k∈FC1    ∀ fault2l ∈FC2  ∃ SITkl∈SIT-SET                  
     DD(faultlk, fault 2l,  OPCi, SITkl) 

- Possibly discriminable, written 
PD(FC1, FC2, OPCi, SIT-SET), 

 otherwise, iff al l SITkl  are in the complement of the 
non-discriminable situations: 

∀kl SITkl ∩ SITND,kl = ∅ 
 

Status and Future Work 
As of now, two different alternatives have been 
implemented to generate the qualitative diagnosis models 
from existing numerical models which both use Matlab 
itself to compute the tuples of the modeling relation. In 

addition, a library of qualitative models will be created 
manually that allows to configure the model based on the 
structural description only. Based on a use case analysis, 
the core of the diagnosabil ity analysis tool and the model-
based on-board diagnosis engine have been developed. 
IDD wil l use a number of guiding applications with the 
goal to demonstrate how the diagnostic tasks described 
can be performed by using the new process and the new 
tools architecture. Furthermore, we aim to demonstrate 
how additional advantages of the new method can be 
achieved, e.g. optimization of sensor placement or deeper 
diagnostic performance. Thereby, the guiding 
applications serve, on the one hand, as case studies for the 
application of the new techniques and, on the other hand, 
as test cases and demonstrators of the results of the 
project. 
The guiding applications chosen cover on the one hand 
different mechatronic systems with central ECU-
functions, and on the other hand the general application of 
diagnostic tasks to multiplexed architecture systems. 
They include 
• The air delivery system for diesel engines (Figure 

7), comprising the exhaust gas turbocharging system 
and the exhaust gas recirculation system (EGR. and 
the Common Rail Injection System (Fiat and 
Magneti-Marelli). 

 

Filter

EGR Actuator

Waste Gate
Actuator

Catalyst

Heat  Exchang er

 

Figure 7 Guiding application:  Air delivery system 

 
• The cooling system (DaimlerChrysler AG), 

including an intercooler, which on the one hand 
increases the efficiency of the engine by cooling the 
compressed air and, hence, increasing the air charge 
rate, and on the other hand decreases NOx emissions 
by keeping the combustion at lower temperature 
(Figure 8). 

• The air conditioning system (Peugeot Citroën PSA) 
which consists of two loops that supply a cold heat 
exchanger and a hot heat exchanger (Figure 9). 

 



air engine turbocharger

3 thermostat
pump

1 radiator12
2 intercooler

air from filter

3
coolant

fan

compressed air
 

Figure 8 Guiding application: Cooling system 

 

Blower Filter

Evaporator

RadiatorMixing
valve

Air entrance
valve Supply

valve

Air intake

Air recycle

Cabin

 

Figure 9 Guiding application: Air conditioning system 

• The multiplexed architecture (Renault) involving 
ECUs, sensors, actuators, functions (EF = elementary 
functions), busses and data frames (Figure 10). The 
design engineer will  be enabled to run a program 
directly on the representation of a designed 
architecture and receive the results of an analysis of 
the interdependency of faults and functions in this 
architecture. 

 
 

ECU

EF EF

Sen

Act

EF EF

Frame ECU

Sen

Act

 

Figure 10 Guiding application: Multiplexed architecture  

A first version of models for these guiding applications 
has been developed and will be used to validate and 
improve the model abstraction module and to evaluate the 
tools. By the end of the project in January 2003, we hope 
to demonstrate the util ity of the tools and the benefits of 
the modified design process based on examples that are 
close to reality. 

References 
[Bidian et al. 99] P. Bidian, M. Tatar, F. Cascio, D. Theseider-

Dupré, M. Sachenbacher, R. Weber, C. Carlén: Powertrain 
Diagnostics: A Model-Based Approach, Proceedings of ERA 
Technology Vehicle Electronic, Systems Conference '99, 
Coventry, UK, 1999 

[Bortolazzi-Steinhauer 00]  J. Bortolazzi, St. Steinhauer, Th. 
Weber:  Development and Quality Management of  In-
Vehicle Software. In: Electronic Systems for Vehicles (VDI 
– Berichte 1547), VDI Verlag , Duesseldorf  2000 

[Brignolo et a. 01] R. Brignolo, F. Cascio, L. Console, P. 
Dague, P. Dubois, O. Dressler, D. Millet, B. Rehfus, P. 
Struss. Integration of Design and Diagnosis into a Common 
Process. In: Electronic Systems for Vehicles, pp. 53-73. VDI 
Verlag, Duesseldorf, 2001. 

[Bryant 92] R. Bryant:  Symbolic Boolean Manipulation with 
Ordered Binary-Decision Diagrams ACM Computing 
Surveys, Vol. 24, No. September 1992 

[Cascio et al. 99] F. Cascio, L. Console, M. Guagliumi, M. 
Osella, A. Panati, S. Sottano, D. Theseider-Dupré:  Strategies 
for on-board diagnostics of dynamic automotive systems 
using qualitative models, AI Communications, June 1999. 

[de Kleer 86] J. de Kleer:  An assumption-based truth 
maintenance system, Artif icial Intelligence 28, 1986 

[Price 98]  C. Price: Function-directed Electrical Design 
Analysis, AI in Engineering 12(4), pp. 445-456, 1998. 

[RAZ’R 02]  Raz'r Version 1.6, Occ'm Software GmbH, see 
http://www.occm.de 

[Sachenbacher-Struss-Weber 00]  M. Sachenbacher, P. Struss, 
R. Weber: Advances in Design and Implementation of OBD 
Functions for Diesel Injection Systems based on a 
Qualitative Approach to Diagnosis, SAE 2000 World 
Congress, Detroit, USA, 2000. 

 [Sachenbacher-Struss 01] M. Sachenbacher, P. Struss:  AQUA: 
A Framework for Automated Qualitative Abstraction. In: 
Working Papers of the 15th International Workshop on 
Qualitative Reasoning (QR-01), San Antonio, USA, 2001 

[Struss 02] P. Struss: Automated Abstraction of Numerical 
Simulations Models - Theory and Practical Experience. In: 
Sixteenth International Workshop on Qualitative Reasoning, 
Sitges, Catalonia, Spain, 2002. 



 


