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Abstract 
This paper presents and discusses work on the automated 
generation of qualitative (diagnostic) models from 
simulation models that have been developed for (control) 
engineering purposes. This work is motivated by an 
attempt to build model-based tools that support a closer 
integration of diagnostic considerations in early design 
phases of on-board systems for vehicles and based on the 
insight that such an attempt has to limit the required 
modeling efforts. We present the mathematical 
foundations and the implementation of the abstraction 
process and discuss the various difficulties and problems 
encountered when we applied the software to real 
automotive subsystems. These difficulties include 
complexity and methodological issues, and what should 
be, but has not been, a major concern of research on 
qualitative reasoning: How to obtain adequate qualitative 
domains. 

1. Introduction 

Each attempt to build a model-based problem solver for 
some industrial application faces the problem of creating 
the appropriate model. It does not suffice to finally 
deliver such a model, it is important that there exist 
methodologies and tools that allow to calculate and 
restrict the costs for model generation. Moreover, it does 
not suffice to develop arbitrary methodologies and tools, 
it is necessary that they are related to the current 
practice, education, work processes, and tools in the 
respective engineering domain. 
Automotive industry has become one of the major areas 
in which model-based solutions, especially for diagnosis-
related tasks, are being developed at a broad scale. 
Although the goal is usually sti ll prototype development 
for feasibili ty studies, the perspective of integrating the 
solutions into the work processes during the product l ife 
cycle has to guide this work, and, hence, the above issues 
have to be addressed. After a successful demonstration of 
the util ity of model-based solutions for on-board 
diagnosis of vehicles in the VMBD project ([Cascio et al. 
99], [Sachenbacher-Struss-Weber 00]), the European 
Fifth Framework project „ Integrated Design Process for 
on-board Diagnosis“ (IDD) pursues the goal to formalize 
and standardize the diagnostic design process and to 
enable the introduction of diagnosis early in the chain. 
This methodological goal has to be combined with 

another important objective: giving to the designers a set 
of model-based tools that can help them in evaluating 
and understanding the effects of each choice on the 
system being designed.  
In order to achieve a close link between the different 
work processes, such as control design, failure-modes-
and-effects analysis (FMEA), and diagnosability analysis, 
we decided to explore the possibil ities for automatically 
transforming the simulation models used for control 
purposes into qualitative diagnostic models.  
In this attempt, we developed some mathematical 
foundations and an implemented solution and applied it 
to examples of vehicle subsystems. We describe the 
approach in section 3. More than presenting what we 
solved, we are interested to discuss the difficulties and 
unsolved problems, because we feel that they deserve 
more attention and research efforts (section 4). We 
continue by summarizing  the framework for this work, 
the IDD project (for more details see [R. Brignolo et al. 
01]). 

2. Integrating Diagnosis into the Design 
Process 

The importance of diagnosis in on-board automotive 
systems is constantly growing together with the 
complexity of the systems. The average dimension of the 
diagnostic code inside a modern electronic control unit 
(ECU) is now more than 50% of the whole code. At 
present, there is no correspondence between such an 
important role of diagnosis in on-board systems and a 
similar role that diagnosis could play in the design 
process chain. 
The correct way of dealing with this situation is to re-
organise the design and development chain so that the 
diagnosis is no longer the last task in the design chain. 
This goal provides an opportunity and challenge to 
model-based systems technology for several reasons. 
First, in early design stages, when physical prototypes of 
the designed system are not existing, diagnostic 
reasoning can only be based on a model. Second, since 
the design is subject to revisions, the adaptation of 
diagnostics and  fault analysis to such revisions has to 
happen automatically or, at least, without major efforts. 
Finally, the existence and use of (simulation) models for 
the development and validation of control design can 



provide a basis for the application model-based diagnosis 
technology.  
The IDD project was started February 2000 with a 
duration of three years and involves both industrial and 
academic partners: Fiat CRF (Torino), Magneti-Marelli 
SpA (Torino), PSA, Peugeot Citroen (Paris), Renault 
(Paris), DaimlerChrysler AG (Stuttgart), OCC’M 
Software GmbH (München), Universita di Torino, 
Université de Paris Nord, XIII, and Technische 
Universität München. 
The current processes of each industrial partners have 
been investigated with a focus on the integration of the 
diagnostic process and diagnosis-related processes into 
the whole design process of mechatronic subsystems, and 
a model of a new design process has been developed. 
In summary, the framework for a new process has to 
satisfy the requirement that the designers (the different 
experts involved in the design) should be supported in 
performing different activities, such as design of control 
algorithms, and their simulation, generation of the 
FMEA, and analysis of the diagnosability, in an 
interleaved way. 
In representing the current stage of the design decisions, 
the model(s) of the current system design(s) has to 
mediate between the processes. Because the models 
currently developed for the control design are mostly 
numerical simulation models, a transformation into 
qualitative models suited for the diagnosis-related tasks 
becomes necessary. One way to achieve this would be 
through a l ibrary of qualitative component models with 
the disadvantage that its creation requires additional 
efforts. Therefore, we decided to also explore ways to 
automate this transformation. This results in the 
framework for a new process shown in Figure 1.   
The foundations for the diagnosabil ity analysis tool have 
been outl ined in [Struss 02]. Our work on the model 
transformation module is described in the following 
section. 

3. Automated M odel Abstraction – Theory 
and Implementation 

3.1 The Goal 
There are several reasons for transforming the given 
numerical model into a qualitative diagnosis model.  A 
fundamental reason is that the distinction between 
correct behavior and a fault by its very nature is a 
qualitative one. Secondly, a finite representation 
promises to provide compact models (e.g. for on-board 
diagnosis) and efficient consistency checks. When 
creating qualitative models, the key question to be 
answered is, "what are the distinctions in the domains of 
the system variables that are both necessary and 
sufficient to achieve a particular goal in a certain 
context and under given conditions?". 
In previous work, we addressed this goal by developing a 
theory and implementation of task-dependent model 
abstraction, called AQUA ([Sachenbacher-Struss 01]) 

whose basic ideas we summarize in the following 
subsection.  
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Figure 1  An Integration of model-based tools based 
on model transformation 

3.2 Task-Dependent Model Abstraction 
In AQUA, the goal of using a model is characterized by a 
set of target par titions of the domains of selected 
variables (e.g. output variables), the context is given by 
the structure of the modeled system, and the conditions 
are represented by a set of initial variables and their 
possible distinctions (e.g. possible observations). Then 
the goal of abstracting a fine-grained model can be 
described as finding variable domains that maintain only 
those distinctions that are necessary to determine the 
required distinctions of the target variables. In other 
words, we want to drop distinctions in the domains of the 
fine-grained model without losing its inferences 
concerning the target partitions.  
We developed a formalization of this goal and an 
algorithm and implementation that takes a fine-grained 
model as an input and generates the task-dependent 
abstraction by eliminating distinctions that do not 
contribute to a distinction between target partitions. 
Usually, the partitions of the domain can be given by 
(finite) sets of landmarks that define qualitative values as 
intervals between adjacent landmarks. The abstract 
model will then contain a subset of the landmarks of the 
original model but maintain the predictive power w.r.t. 
qualitative values of the target variables. This solution 
worked quite well for a number of examples including 
on-board diagnosis of a turbo charger system on a real 
test vehicle. However, it does not provide the full solution 
to the problem we are addressing here.  



3.3 Generation of a Finite Relational Model from 
an Equation Model 

AQUA needs a fine-grained, but f inite base relation as a 
starting point. When we are given a numerical 
simulation model, as in our application, or simply a set of 
ordinary differential equations on paper, we first have to 
generate such a finite relation. 
Let us assume first, we are given 
- a numerical (simulation) model that computes one 

output variable y as a function of n input variables, 
xi: 

y = f(x1 , ..., xn) 
(This is general enough, because if there is more 
than one output, we simply have to consider several 
functions), 

- a set of landmark values for all input variables and 
the output variable 

- two continuous functions, ε-(x1, ..., xn), ε+(x1, ...xn), 
that characterize the precision of the model, i .e. the 
base model is given by the envelope of f: 
R0(f, ε-, ε+) =  
{  (x1 , ..., xn, y) | f(x1 , ..., xn) - ε-(x1, ...xn) < y <  

f(x1 , ..., xn) + ε+(x1, ..., xn) } .  
For monotonic (sections of) functions, it is 
straightforward to define and compute the model 
abstraction for a given sets of landmarks. For each tuple 
of qualitative input values, (q1,j1, ... , qn,jn), we have to 
compute the qualitative values of y that are consistent 
with this tuple. We define a qualitative value as an 
interval between two adjacent landmarks: qi,j := (l i,j, l i,j+1). 
Then a tuple of qualitative values is the cross product of 
such intervals, i.e. an n-dimensional rectangle. The 
corners of such a rectangle are given by the tuples that 
combine the bounding landmarks: 

Corners(q1,j1, ... , qn,jn) :=  
{  (l1,k1, ... ln,kn) | qi,j := (l i,j, l i,j+1) ∧ ki ∈{ j, j+1}  } . 

If f is a continuous function, the consistent qualitative 
values of y are those that have a non-empty intersection 
with the interval between the minimal and the maximal 
value that f-ε-, f+ε+ take on in the rectangle. If these 
envelope functions are also monotonic, then these 
extreme points are taken on at some corners of the 
rectangle. Hence, we have to compute only the function 
values at the corners in order to obtain the (minimal) 
abstract relation that covers the envelope of f, as stated by 
the following theorem. 
 
Theorem (Abstraction of R0(f, εεεε-, εεεε+) for monotonic 
functions) 

Let f-ε- , f+ε+  be continuous and monotonic for each 
xi, {qi,j}  the qualitative values for xi, and {qy,j}  the 
ones for y. For each tuple of qualitative input values, 
we define the range of the output y as 
inty{  (q1,j1, ... , qn,jn) :=  
         [min { (f-ε- )(cor) | cor∈Corners(q1,j1, ... , qn,jn),  
          max { (f+ε+)(cor) | cor∈Corners(q1,j1, ... , qn,jn)]. 
Then  

Rabstr(f, ε-, ε+) := 

{ (q1,j1, ... , qn,jn, qy,j)|qy,j ∩inty{ (q1,j1, ... , qn,jn)≠∅}  
is an abstraction of R0(f, ε-, ε+), i .e.  

R0(f, ε-, ε+) ⊆ Rabstr(f, ε-, ε+) , 
and it is minimal, i .e. any proper subset R’abstr(f, ε-, ε
+) of Rabstr(f, ε-, ε+) is not an abstraction of R0(f, ε-, ε+). 

The example in Figure 2 shows the abstract relation as a 
set of shaded rectangles covering the envelope around the 
function - for the monotonic sections. It also illustrates 
that Rabstr(f, ε-, ε+) may fail in regions where the envelope 
has a maximum (or minimum).  

 

Figure 2  Abstraction of the envelope of a function 

To avoid this, landmarks have to be chosen in an 
appropriate way, i.e., intuitively, there have to be 
landmark tuples of the input variables „close enough“ to 
the location of the maximum, such that the respective 
value of the function lies in the qualitative output value 
that covers the maximum value, as il lustrated in Figure 
3. Without giving details, we state that, if f-ε-, f+ε+  are 
differentiable, it is possible to compute what „close 
enough“ means, based on bounds of the derivatives 
around the extreme points. However, we also point out 
that this requires an analysis of the details of the function 
which either involves the user or requires some 
automated approach. 
This is not the only caveat to be considered. 
The procedure based on the theorem gives us a way to 
generate a finite relation that covers the numerical base 
relation for  a given set of landmarks. However, we have 
to make sure that the chosen landmark sets still  maintain 
the relevant distinctions the numerical model could 
derive. 
 

 

Figure 3  Abstraction cover ing the maximum 



There are only two factors that influence and provide 
boundaries to the choice of the model granularity 
represented by the landmark sets: 
- For observable variables, it must not be below the 

level of observable distinctions. 
- There is no need to introduce more than the target 

distinctions to the respective variables (unless they 
contribute to deriving target distinctions of other 
variables). 

For all other variables, we have no a priori criteria for 
selecting appropriate landmarks. They can only be 
derived from the above restrictions and the model. This 
constitutes a first major problem. Of course, a second one 
can be that the precision of observations is high, and so is 
the number of possible initial landmarks for observables.  

3.4 Abstraction of Ordinary Differential 
Equations 

If we have to create an abstract model of a dynamic 
system, some of the variables are derivatives of other 
variables. They do not require any special treatment in 
the computation. Ordinary differential equations are 
treated just like algebraic equations and transformed into 
qualitative constraints involving variables and 
derivatives.  

3.5 Automated Abstraction of a Numer ical 
Simulation Model 

In order to implement the model abstraction, we need to 
compute the output values of landmark tuples (as corners 
of qualitative value tuples). But a means for this 
computation was the starting point for our work: the 
numerical simulation model. In our implementation, the 
numerical model is a MATLAB/Simulink model. Such a 
model consists of a set of subsystems that have a number 
of interconnected input and output values and are 
possibly organized in a hierarchy. These subsystems, at 
some appropriate level, will  be the entities that are 
subject to the abstraction procedure that was outl ined 
above.  
However, this model is a simulation model and computes 
system behavior over time. In particular, it contains 
integration steps, and, hence, the value of some variables 
may refer to a later time point than the inputs to the 
system. We have to make sure that the qualitative 
constraints link only values that occur at the same time 
and therefore, we have to apply some surgery to the 
subsystem structure: any integration block (or, more 
generally, any block that involves a delay) is eliminated 
from the respective subsystem, its input (the derivative) 
becomes an output of the modified subsystem, and its 
output (the integrated value) is treated as the input to the 
remainder of the computation, if there is any. Figure 4 
illustrates this procedure. 
Simulation freaks are usually horrified by this change in 
the model and suspect that it eliminates the dynamics of 
the system. However, this fear is not justified and results 

from a procedural view on dynamic systems as it is 
represented by the Simulink model. Nobody would claim 
that the set of differential equations 

d/dt x = a*y 
d/dt y = b*x 

does not capture the dynamics of the system, just because 
it does not mention integration. 
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Figure 4  Eliminating integration steps 

From the simulation model that corresponds to the 
equations, we obtain two blocks for abstraction as 
i llustrated in Figure 5. 
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Figure 5  The restructur ing of the simulation model 
yields the differential equations as blocks 

They correspond to the equations to be abstracted, and, 
hence, exactly the intended result will be produced. 
Stated differently: the integration blocks in the 
simulation model do not capture anything that is specific 
to the modeled system, but only (the implementation of) 
the general simulation algorithm which is totally 
independent of this system. For the abstract model, they 
would have to be replaced by a qualitative simulation 
algorithm rather than a model fragment.  
Parameters that occur in the subsystems, such as the 
coefficients a and b in the example, are treated as 
subsystem inputs. After these modifications to the 
Simulink model, we can apply the abstraction procedure 
to the resulting subsystems (which possibly miss some 
connections via integration blocks) and obtain the 



abstract relation of the entire Simulink model as the join 
of the abstract relations of the various subsystems. In our 
implementation, we use MATLAB/Simulink to compute 
the tuples of the abstract relation (i.e. the output values at 
the corners, their minima and maxima and the consistent 
qualitative output values) and store these tuples as a 
constraint in the modeling framework of RAZ’R 
([RAZ’R 02] which is based on ordered multiple decision 
diagrams (OMDD).  
This implementation has been applied to examples of car 
subsystems including a model of the air intake of a 
vehicle that had been developed for control purposes. In 
these exercises, a lot of difficulties had to be overcome, 
and we think that some of the problems, although quite 
fundamental to qualitative modeling, have not 
sufficiently or not at all been addressed by the research 
community. In the following, we discuss some of the 
major problems that occurred in order stimulate 
discussion and work on these issues.  
Our goal is to automatically generate a qualitative model 
for diagnosis, and we distinguish two sets of problems, 
namely related to 
- the generation of a qualitative model and to 
- the generation of a diagnostic model. 

4. Practical Obstacles to Automated Model 
Abstraction 

4.1 Computational Complexity 
The first obstacle one faces is a fairly obvious one: the 
combinatorial explosion that lurks in the algorithm. In 
the air intake  example, the model contains 9 subsystems 
at the top level (corresponding to components). Four of 
them have 7 inputs, two others have 5 and 6, 
respectively. Even if each variable domain had only 10 
landmarks, The computation of the output for 107 
landmark combinations is not feasible. Furthermore, the 
output value of each landmark combination is needed for 
qualitative tuple generation of up to 2n qualitative input 
value combinations, where n is the number of input 
variables. Caching of these computed outputs has its 
limitation, and beyond this, re-computation cannot be 
avoided.   
In response to this, subsystems with many inputs had to 
be split into a number of subsystems with less inputs. In 
our experiments, we handled blocks with up to three 
inputs and around 60 landmarks. This lead to runtimes of 
several hours, which does not necessarily constitute a 
serious obstacle when compared to the time spent on 
writing diagnostics by hand. However, other effects 
matter: in general, „smaller subsystems“ implies longer 
computational chains of subsystems connected by 
intermediate variables.  

4.2 The Curse of Intermediate Var iables 
This situation raises two problems.  

First, due to the finite granularity of the domains of 
intermediate variables, „rounding er rors“  occur at the 
interface of two subsystems. This happens because the 
output for a landmark combination does, in general, not 
hit a landmark of the output. The rounding error on 
average amounts to one qualitative value (interval) of the 
output, and it is guaranteed. The errors of several inputs 
of a subsystem combine, and they accumulate along the 
computational chain. If we assume such a chain 
consisting of k subsystems whose (single) output is a 
l inear combination of its inputs, the rounding error 
amounts to the sum of the width of k intervals. When a 
subsystem (component) with n inputs is decomposed into 
smaller subsystems with, say two inputs each, the number 
of these subsystems, k, may well be in the order of n. If 
�d�denotes the cardinality of the output domain, then 
the overall result of the l inear combination with the 
rounding error included will cover the entire domain 
with a ratio of k/�d�. For the case of non-linear 
subsystems, it can be worse. For instance, the 
decomposed components in our examples had up to 13  
subsystems which means that even with, say, 30 
landmarks, the abstracted model will  hardly yield any 
restrictions. Hence, we need to increase the number of 
landmarks. 
This leads to the second problem: determining 
appropriate sets of landmarks. 

4.3 Fundamental: How to Determine Initial 
Landmarks? 

Here, the first question to answer is what range to cover  
with the landmarks. While the input and output variables 
of components usually have some physical meaning that 
helps to guess the possible range, this is not the case for 
the intermediate results of the computation. This makes 
it extremely difficult to guess the range of the values that 
can occur. This holds even more, if we want to derive a 
model for diagnostic purposes, since we have to make 
sure that this range does cover all possible conditions, 
including fault situations. Actually, this also applies to 
many component inputs and outputs: for instance, how 
can we estimate what values the derivative of some 
unmeasured pressure at the interface of two components 
can take on under the sudden occurrence of a leakage?  
To some extent, the answer lies in the model: together 
with the ranges of input variables it determines the 
possible range of the output. For monotonic functions, we 
can easily compute the extreme points, and this is what 
we actually partly did in our experiments. However, the 
Simulink model can (and, in practice, usually will) 
contain not only nonlinear analytic functions, but also 
tables with empirical data and even black-box model 
fragments with C code which makes it extremely difficult 
or impossible to compute the extreme points in a 
deterministic way. One will have to run simulations on 
real data and determine the extreme points occurring, 
and also this we did. Obviously, there is no guarantee for 
covering of the range of behaviors, and this holds even 



more when the model has to cover all possible fault 
situations (see also the discussion in section 4.6).  
Under these circumstances, the second problem is even 
harder to solve: the selection of landmarks within the 
decided range. For physical variables, domain experts 
may be able to propose some important distinctions as 
candidates for landmarks. But these are unlikely to 
suffice, and for intermediate variables, there is hardly 
any alternative to choosing landmarks by an equidistant 
partitioning of the range.  Unfortunately, this enforces 
again the introduction of many landmarks in order to 
avoid large rounding errors, because under this goal, the 
number of landmarks is determined by smallest 
distinctions required. 
Another incarnation of the landmark selection problem 
occurs in the frequent case where there are certain given 
landmarks for the output and for some inputs of a 
subsystem, and appropriate landmarks for the other 
inputs should be determined. While for AQUA, this is a 
non-problem due to the relational representation, we 
become a victim of the directionality of the Simulink 
model which does not allow to compute inputs from 
outputs. Again, the only compensation is to select a fine-
grained partitioning of the input domain.  

4.4 Discussion of the Dilemma 
In summary, there is a „positive feedback“ loop in the 
interdependencies among the problems discussed which 
can be summarized as follows: 
1 If we have no „ informed method“ for selecting 

landmarks, we have to select equidistant ones. 
2 If we choose equidistant ones, in order to avoid 

rounding errors, we have to choose many. 
3 If we choose many landmarks, we have to reduce the 

number of inputs due to the combinatorial 
complexity.  

4 A reduction of the number of inputs leads to more 
subsystems and more intermediate variables. 

5 For the intermediate variables, there are no clues for 
the landmarks (→ 1.). 

6 More intermediate variables introduce more 
locations for rounding errors, hence more landmarks 
are necessary (→ 2.). 

As a result, we have a positive feedback influence on 
complexity, and for some of the examples we considered, 
this rendered a solution infeasible, so far. In addition, the 
model becomes more complex both in terms of its 
structure and the landmark sets. This turned the steps 
that required our intervention (such as determining 
ranges) more cumbersome and error prone.  
But perhaps a solution l ies in the opposite direction: 
work with few landmarks, abstract larger blocks with 
more inputs and, thus, avoid rounding errors. We did not 
find much evidence that this is possible for interesting 
examples, because any starting point in terms of chosen 
landmarks raises the third issue and enters the cycle. 
Main reasons for this lie in the fact that, for many 
variables, no a priori selection of good landmarks seems 

possible, and that the form of the simulation model, 
especially its directed computation, prevents to obtain 
them.  

4.5 Refinement instead of Abstraction  
– A Solution? 

The problems discussed above are significant. They are 
not related to the automated abstraction procedure 
AQUA itself, but to the step of creating its basis, a finite 
relation which is fine-grained enough to preserve the 
required distinctions. These difficulties could be avoided 
if we go the opposite way: start with a coarse model and 
refine it where necessary (see [Sachenbacher 01]).  
The basic idea can be described as follows: for each 
variable of a subsystem, we determine some (small) 
initial set of landmarks and generate the respective 
abstract relation as described above. If a qualitative value 
of some variable occurs in many tuples, it is identified as 
a candidate for refinement and split into two or more 
intervals by the introduction of additional landmarks. 
Then relation abstraction is applied using the extended 
landmark set, and this is repeated until we end up with a 
satisfactory model granularity.  
As an illustration, consider the function envelope 
displayed in Figure 6. As the abstract relation shows, qx3 
occurs in 5 tuples and, hence, will lead only to weak 
predictions of the value of y. 
A closer look at this approach reveals a number of 
problems and caveats: 
- The outcome strongly depends on the choice of 

initial landmark sets.  
- The question arises which var iables are subject to 

refinement. For instance, qy6 occurs in 6 tuples. If i t 
is refined, this might also trigger a further 
refinement of qx3 ... qx8 which may lead to more 
landmarks of y and so forth. 
y
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Figure 6  Abstract relation (shaded rectangles) 
cover ing the envelope of the numer ical function 

- It is not obvious whether the process terminates 
before reaching the granularity of the original 
relation and which termination criteria are 
appropriate. 



- qy2 occurs in 5 tuples, but a refinement of this 
qualitative value may not be necessary, because not 
all of them are adjacent.  

- Finally, without a detailed analysis of the original 
relation, some useless refinement steps might be 
attempted. For instance, qx7 would be divided 
although this will not provide any benefit. The 
problem is how to detect this. That a first split of the 
interval results in qualitative values that are 
consistent with the same qualitative values of y does 
not suffice: This criterion would also stop the 
refinement of qx3, although this wil l eventually yield 
a useful refinement. 

The key concepts for addressing these issues are the same 
as for task-oriented qualitative abstraction: target 
distinctions and observable distinctions, since both limit 
the refinement to be performed: refinement below 
observable distinctions does not make sense, and also the 
refinement of target distinctions is excluded unless 
required by some other target distinction.  
Thus, the refinement strategy could be stated informally 
as follows: 
1. For target variables, choose the target distinctions, 

for other landmarks, choose few landmarks well 
above the observable distinctions and make this the 
current landmark set L curr . 

2. Generate the abstract relation, R(Lcurr) for the 
current set of landmarks. 

3. For all tuples qobs=(qobs,1, ... , qobs,k): 
Compute the target index, i.e. the maximal 
number of adjacent qualitative target tuples that 
are consistent with qobs. 
Compute also the target indexes of the landmark 
tuples that are corners of qobs. 

I f the target index of qobs  differs significantly 
from the indexes of its corners,  
      Then For  all j  
  I f qobs,j has a refinement above the 
  observable distinctions, 
  Then add l landmarks for qobs,j to Lcurr. 

4. If Lcurr has changed, go to 2 
5. Perform task-dependent model abstraction on 

R(Lcurr). 

There are some issues and problems in this solution that 
need explanation and discussion: 
- The index of qualitative values and landmark tuples 

is a measure of the imprecision of the predictions 
that can be derived from them (namely the size of 
the entailed disjunction). For instance, the index of 
lx4 in Figure 6 is 1 (because it is consistent only with 
qy6), while the one of lx7 is 6. The idea is that the 
index of landmark tuples reflects the inherent 
imprecision of the model (because landmarks 
represent „exact input“) and that the indexes of the 
landmark tuples that are corners of a qualitative 
value can be used as a reference for its own index. It 
cannot be smaller than the minimum of the „corner 
indexes“, but should not be significantly greater than 

the maximum. This idea supplies a set of possible 
heuristics for deciding whether or not splitting a 
qualitative value promises to create a model that 
improves the determination of target distinctions. 
Such a heuristic would suggest to split qx3 (its index 
5 is significantly greater than the index 1 of its 
corners) but not qx7  whose index of 6 is equal to its 
corner indexes. 

- The deviation of the index of a qualitative value 
from its corner indexes could also be used for 
determining the number  of landmarks to be 
introduced in one step.  

- However, there remains the problem where to place 
the additional landmarks. The example of qx6 shows 
that a half-split approach or, more generally, the 
introduction of equidistant landmarks may generate 
many useless landmarks and many iterations. Again, 
a more informed choice of the additional landmarks 
would require a more detailed analysis of the 
functional interdependency and is either in conflict 
with the goal of automation or bears a significant 
increase in the computational efforts.  

- Running abstraction (step 5) is necessary in order 
to eliminate both ineffective distinctions that might 
have been introduced in the refinement phase and 
previous landmarks that may have become obsolete. 
One might be tempted to perform this after each 
refinement step in order to avoid computations in 
subsequent steps. But this comes at the price of some 
bookkeeping that prevents the algorithm from re-
introducing the discarded landmarks. This does not 
apply to the second kind of elimination, though. 

In summary, there are serious problems and complexity 
traps lurking also in a realization of the refinement 
approach sketched above as an alternative to abstraction. 
A closer and more formal analysis and experiments are 
required in order to determine its feasibili ty and practical 
value. 
Finally, it is worth noting that, in a sense, the algorithm 
outlined above, in omitting a refinement of target 
distinctions is based on an implicit assumption about the 
completeness of the predictor that uses the resulting 
model.  As an il lustration of this fact, consider the trivial 
example of a system that is composed of two equality 
constraints: x=y and y=z where x is observable with the 
integers as a landmark set, y has a target distinction { [-∞
, 0], [0, ∞]} , and z’ s target distinction is given by the 
landmark set { -1, 0, 1} . If the predictor for the abstract 
model uses local propagation via y (or the join of the 
individual abstracted relations) to determine z, it is 
necessary to introduce the landmarks -1 and 1 for y, 
while this is not necessary if we operate on the 
abstraction of the join of the fine-grained equality 
relations.  



4.6 Problems in Generating a Qualitative 
Diagnostic Model 

The difficulties discussed above are independent of the 
particular purpose of the model and its abstraction. In our 
application, the abstract model is meant to support 
diagnosis-related tasks. This creates additional 
requirements, and we met further difficulties in the 
attempt to satisfy these model requirements based on 
simulation models that were originally developed for 
purposes of control. We list the most important problems 
we encountered. 
1 Needed: a component-or iented model. For 

achieving the simulation of the system behavior, the 
component structure of the respective device is fairly 
irrelevant. As a result, the subsystem structure of the 
model does not necessarily reflect the component 
structure of the device. For instance, a certain pipe 
might not occur at all in this model. But if diagnosis 
has to consider the possibility of a leakage or 
clogging, the component has to represented and 
modeled. 

2 Needed: Preservation of the physical structure.  A 
typical example of a violation of this requirement is 
that input and output flow of an aggregate device 
were identified by an equations which, again, is based 
on the assumption of normal behavior (no leakage 
occurring).  

3 Needed: models of faulty behavior . They are 
required if we are not only interested in fault 
detection, but fault (class) identification (as in on-
board diagnostics), diagnosability analysis, and 
FMEA. As long as control is considered as 
controlling the device under normal conditions, faults 
are not considered in the development of the control 
algorithms. As a result, they are not part of the 
respective simulation model. Extending this to 
include fault models is not always trivial. If faults 
correspond to deviating parameters, it is fairly 
straightforward, but in the general case, faults may 
change the structure of the model radically. For 
instance, introducing a pipe with the potential to have 
a leakage means introducing another state variable 
and affecting the possibil ity to simulate the model.  

4 Needed: a physically cor rect simulation model. 
Since the diagnosis approach is based on identifying 
discrepancies between a certain behavior mode (OK 
mode or some fault) and the respective model, i t is 
crucial that the real physical behavior is actually 
covered by (the envelope of) the model. If this is not 
the case, e.g. because the error functions ε-, ε+ are 
difficult to estimate, diagnosis runs the risk of 
detecting model faults rather than component faults 
and, hence, of generating wrong diagnoses. While we 
may assume that the normal behavior is properly 
covered if the model satisfies the needs of control, it 
also has to correctly model the behavior if a fault 
occurs. We found many examples where the models 
of components were based on an implicit assumption 

about overall normal behavior. This may be addressed 
by an appropriate modeling methodology. However, 
there is a serious limitation: in particular for complex 
components, we may lack first principles models, and 
the simulation model contains characteristic maps 
that contain empirical data. In this case, the 
conditions under which these date were obtained 
(typically normal conditions) are compiled into the 
model in a way that is hard or impossible to detect. 

We should note that only few of these difficulties really 
stem from an inappropriate modeling process or 
modeling faults. Rather, it is the purpose of the 
simulation models, namely simulating correct behavior 
for control purposes, that is in conflict with the 
diagnostic requirements. Without integrating the views 
and the work processes concerning system development 
for control and diagnosis, this will be difficult to change. 

5. Conclusions 

The exploitation of model-based systems in industry wil l 
greatly depend on the (additional) modeling efforts they 
require. This lead us to the attempt of reducing these 
efforts by automated conversion of existing simulation 
models into abstract models suited for model-based 
problem solvers. The problems we encountered and 
described in this paper are significant, concerning both 
the automated model abstraction and the generation of a 
diagnostic model. One origin l ies in unsolved theoretical 
and technical problems, and one purpose of this paper is 
to stimulate research into these problems. But one also 
has to realize that another class of problems is due to 
„cultural“ , educational, and organizational issues which 
are, at least, equally difficult to overcome.  
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