
Appeared in: Sixteenth International Workshop on Qualitative Reasoning, Sitges, Catalonia, Spain, 2002.

Automated Abstraction of Numer ical Simulation Models
- Theory and Practical Exper ience

P. Struss

Technical University of Munich and OCC’ M Software

struss@in.tum.de, struss@occm.de

Abstract
This paper presents and discusses work on the automated
generation of qualitative (diagnostic) models from
simulation models that have been developed for (control)
engineering purposes. This work is motivated by an
attempt to build model-based tools that support a closer
integration of diagnostic considerations in early design
phases of on-board systems for vehicles and based on the
insight that such an attempt has to limit the required
modeling efforts. We present the mathematical
foundations and the implementation of the abstraction
process and discuss the various difficulties and problems
encountered when we applied the software to real
automotive subsystems. These difficulties include
complexity and methodological issues, and what should
be, but has not been, a major concern of research on
qualitative reasoning: How to obtain adequate qualitative
domains.

1. Introduction

Each attempt to build a model-based problem solver for
some industrial application faces the problem of creating
the appropriate model. It does not suffice to finally
deliver such a model, it is important that there exist
methodologies and tools that allow to calculate and
restrict the costs for model generation. Moreover, it does
not suffice to develop arbitrary methodologies and tools,
it is necessary that they are related to the current
practice, education, work processes, and tools in the
respective engineering domain.
Automotive industry has become one of the major areas
in which model-based solutions, especially for diagnosis-
related tasks, are being developed at a broad scale.
Although the goal is usually sti ll prototype development
for feasibili ty studies, the perspective of integrating the
solutions into the work processes during the product l ife
cycle has to guide this work, and, hence, the above issues
have to be addressed. After a successful demonstration of
the util ity of model-based solutions for on-board
diagnosis of vehicles in the VMBD project ([Cascio et al.
99], [Sachenbacher-Struss-Weber 00]), the European
Fifth Framework project „ Integrated Design Process for
on-board Diagnosis“ (IDD) pursues the goal to formalize
and standardize the diagnostic design process and to
enable the introduction of diagnosis early in the chain.
This methodological goal has to be combined with

another important objective: giving to the designers a set
of model-based tools that can help them in evaluating
and understanding the effects of each choice on the
system being designed.
In order to achieve a close link between the different
work processes, such as control design, failure-modes-
and-effects analysis (FMEA), and diagnosability analysis,
we decided to explore the possibil ities for automatically
transforming the simulation models used for control
purposes into qualitative diagnostic models.
In this attempt, we developed some mathematical
foundations and an implemented solution and applied it
to examples of vehicle subsystems. We describe the
approach in section 3. More than presenting what we
solved, we are interested to discuss the difficulties and
unsolved problems, because we feel that they deserve
more attention and research efforts (section 4). We
continue by summarizing the framework for this work,
the IDD project (for more details see [R. Brignolo et al.
01]).

2. Integrating Diagnosis into the Design
Process

The importance of diagnosis in on-board automotive
systems is constantly growing together with the
complexity of the systems. The average dimension of the
diagnostic code inside a modern electronic control unit
(ECU) is now more than 50% of the whole code. At
present, there is no correspondence between such an
important role of diagnosis in on-board systems and a
similar role that diagnosis could play in the design
process chain.
The correct way of dealing with this situation is to re-
organise the design and development chain so that the
diagnosis is no longer the last task in the design chain.
This goal provides an opportunity and challenge to
model-based systems technology for several reasons.
First, in early design stages, when physical prototypes of
the designed system are not existing, diagnostic
reasoning can only be based on a model. Second, since
the design is subject to revisions, the adaptation of
diagnostics and fault analysis to such revisions has to
happen automatically or, at least, without major efforts.
Finally, the existence and use of (simulation) models for
the development and validation of control design can

provide a basis for the application model-based diagnosis
technology.
The IDD project was started February 2000 with a
duration of three years and involves both industrial and
academic partners: Fiat CRF (Torino), Magneti-Marelli
SpA (Torino), PSA, Peugeot Citroen (Paris), Renault
(Paris), DaimlerChrysler AG (Stuttgart), OCC’M
Software GmbH (München), Universita di Torino,
Université de Paris Nord, XIII, and Technische
Universität München.
The current processes of each industrial partners have
been investigated with a focus on the integration of the
diagnostic process and diagnosis-related processes into
the whole design process of mechatronic subsystems, and
a model of a new design process has been developed.
In summary, the framework for a new process has to
satisfy the requirement that the designers (the different
experts involved in the design) should be supported in
performing different activities, such as design of control
algorithms, and their simulation, generation of the
FMEA, and analysis of the diagnosability, in an
interleaved way.
In representing the current stage of the design decisions,
the model(s) of the current system design(s) has to
mediate between the processes. Because the models
currently developed for the control design are mostly
numerical simulation models, a transformation into
qualitative models suited for the diagnosis-related tasks
becomes necessary. One way to achieve this would be
through a l ibrary of qualitative component models with
the disadvantage that its creation requires additional
efforts. Therefore, we decided to also explore ways to
automate this transformation. This results in the
framework for a new process shown in Figure 1.
The foundations for the diagnosabil ity analysis tool have
been outl ined in [Struss 02]. Our work on the model
transformation module is described in the following
section.

3. Automated M odel Abstraction – Theory
and Implementation

3.1 The Goal
There are several reasons for transforming the given
numerical model into a qualitative diagnosis model. A
fundamental reason is that the distinction between
correct behavior and a fault by its very nature is a
qualitative one. Secondly, a finite representation
promises to provide compact models (e.g. for on-board
diagnosis) and efficient consistency checks. When
creating qualitative models, the key question to be
answered is, "what are the distinctions in the domains of
the system variables that are both necessary and
sufficient to achieve a particular goal in a certain
context and under given conditions?".
In previous work, we addressed this goal by developing a
theory and implementation of task-dependent model
abstraction, called AQUA ([Sachenbacher-Struss 01])

whose basic ideas we summarize in the following
subsection.

Model transformation

Qualitative
diagnostic model

Onboard - Diagnosis
Software

Generation Tool

Diagnosabilty
Analysis Tool

FMEA
Support Tool

Numerical model
(quantitative)

Control
Generation Tool

Modeling and
Simulation Tool

Design
Tool

Figure 1 An Integration of model-based tools based
on model transformation

3.2 Task-Dependent Model Abstraction
In AQUA, the goal of using a model is characterized by a
set of target par titions of the domains of selected
variables (e.g. output variables), the context is given by
the structure of the modeled system, and the conditions
are represented by a set of initial variables and their
possible distinctions (e.g. possible observations). Then
the goal of abstracting a fine-grained model can be
described as finding variable domains that maintain only
those distinctions that are necessary to determine the
required distinctions of the target variables. In other
words, we want to drop distinctions in the domains of the
fine-grained model without losing its inferences
concerning the target partitions.
We developed a formalization of this goal and an
algorithm and implementation that takes a fine-grained
model as an input and generates the task-dependent
abstraction by eliminating distinctions that do not
contribute to a distinction between target partitions.
Usually, the partitions of the domain can be given by
(finite) sets of landmarks that define qualitative values as
intervals between adjacent landmarks. The abstract
model will then contain a subset of the landmarks of the
original model but maintain the predictive power w.r.t.
qualitative values of the target variables. This solution
worked quite well for a number of examples including
on-board diagnosis of a turbo charger system on a real
test vehicle. However, it does not provide the full solution
to the problem we are addressing here.

3.3 Generation of a Finite Relational Model from
an Equation Model

AQUA needs a fine-grained, but f inite base relation as a
starting point. When we are given a numerical
simulation model, as in our application, or simply a set of
ordinary differential equations on paper, we first have to
generate such a finite relation.
Let us assume first, we are given
- a numerical (simulation) model that computes one

output variable y as a function of n input variables,
xi:

y = f(x1 , ..., xn)
(This is general enough, because if there is more
than one output, we simply have to consider several
functions),

- a set of landmark values for all input variables and
the output variable

- two continuous functions, ε-(x1, ..., xn), ε+(x1, ...xn),
that characterize the precision of the model, i .e. the
base model is given by the envelope of f:
R0(f, ε-, ε+) =
{ (x1 , ..., xn, y) | f(x1 , ..., xn) - ε-(x1, ...xn) < y <

f(x1 , ..., xn) + ε+(x1, ..., xn) } .
For monotonic (sections of) functions, it is
straightforward to define and compute the model
abstraction for a given sets of landmarks. For each tuple
of qualitative input values, (q1,j1, ... , qn,jn), we have to
compute the qualitative values of y that are consistent
with this tuple. We define a qualitative value as an
interval between two adjacent landmarks: qi,j := (l i,j, l i,j+1).
Then a tuple of qualitative values is the cross product of
such intervals, i.e. an n-dimensional rectangle. The
corners of such a rectangle are given by the tuples that
combine the bounding landmarks:

Corners(q1,j1, ... , qn,jn) :=
{ (l1,k1, ... ln,kn) | qi,j := (l i,j, l i,j+1) ∧ ki ∈{ j, j+1} } .

If f is a continuous function, the consistent qualitative
values of y are those that have a non-empty intersection
with the interval between the minimal and the maximal
value that f-ε-, f+ε+ take on in the rectangle. If these
envelope functions are also monotonic, then these
extreme points are taken on at some corners of the
rectangle. Hence, we have to compute only the function
values at the corners in order to obtain the (minimal)
abstract relation that covers the envelope of f, as stated by
the following theorem.

Theorem (Abstraction of R0(f, εεεε-, εεεε+) for monotonic
functions)

Let f-ε- , f+ε+ be continuous and monotonic for each
xi, {qi,j} the qualitative values for xi, and {qy,j} the
ones for y. For each tuple of qualitative input values,
we define the range of the output y as
inty{ (q1,j1, ... , qn,jn) :=
 [min { (f-ε-)(cor) | cor∈Corners(q1,j1, ... , qn,jn),
 max { (f+ε+)(cor) | cor∈Corners(q1,j1, ... , qn,jn)].
Then

Rabstr(f, ε-, ε+) :=

{ (q1,j1, ... , qn,jn, qy,j)|qy,j ∩inty{ (q1,j1, ... , qn,jn)≠∅}
is an abstraction of R0(f, ε-, ε+), i .e.

R0(f, ε-, ε+) ⊆ Rabstr(f, ε-, ε+) ,
and it is minimal, i .e. any proper subset R’abstr(f, ε-, ε
+) of Rabstr(f, ε-, ε+) is not an abstraction of R0(f, ε-, ε+).

The example in Figure 2 shows the abstract relation as a
set of shaded rectangles covering the envelope around the
function - for the monotonic sections. It also illustrates
that Rabstr(f, ε-, ε+) may fail in regions where the envelope
has a maximum (or minimum).

Figure 2 Abstraction of the envelope of a function

To avoid this, landmarks have to be chosen in an
appropriate way, i.e., intuitively, there have to be
landmark tuples of the input variables „close enough“ to
the location of the maximum, such that the respective
value of the function lies in the qualitative output value
that covers the maximum value, as il lustrated in Figure
3. Without giving details, we state that, if f-ε-, f+ε+ are
differentiable, it is possible to compute what „close
enough“ means, based on bounds of the derivatives
around the extreme points. However, we also point out
that this requires an analysis of the details of the function
which either involves the user or requires some
automated approach.
This is not the only caveat to be considered.
The procedure based on the theorem gives us a way to
generate a finite relation that covers the numerical base
relation for a given set of landmarks. However, we have
to make sure that the chosen landmark sets still maintain
the relevant distinctions the numerical model could
derive.

Figure 3 Abstraction cover ing the maximum

There are only two factors that influence and provide
boundaries to the choice of the model granularity
represented by the landmark sets:
- For observable variables, it must not be below the

level of observable distinctions.
- There is no need to introduce more than the target

distinctions to the respective variables (unless they
contribute to deriving target distinctions of other
variables).

For all other variables, we have no a priori criteria for
selecting appropriate landmarks. They can only be
derived from the above restrictions and the model. This
constitutes a first major problem. Of course, a second one
can be that the precision of observations is high, and so is
the number of possible initial landmarks for observables.

3.4 Abstraction of Ordinary Differential
Equations

If we have to create an abstract model of a dynamic
system, some of the variables are derivatives of other
variables. They do not require any special treatment in
the computation. Ordinary differential equations are
treated just like algebraic equations and transformed into
qualitative constraints involving variables and
derivatives.

3.5 Automated Abstraction of a Numer ical
Simulation Model

In order to implement the model abstraction, we need to
compute the output values of landmark tuples (as corners
of qualitative value tuples). But a means for this
computation was the starting point for our work: the
numerical simulation model. In our implementation, the
numerical model is a MATLAB/Simulink model. Such a
model consists of a set of subsystems that have a number
of interconnected input and output values and are
possibly organized in a hierarchy. These subsystems, at
some appropriate level, will be the entities that are
subject to the abstraction procedure that was outl ined
above.
However, this model is a simulation model and computes
system behavior over time. In particular, it contains
integration steps, and, hence, the value of some variables
may refer to a later time point than the inputs to the
system. We have to make sure that the qualitative
constraints link only values that occur at the same time
and therefore, we have to apply some surgery to the
subsystem structure: any integration block (or, more
generally, any block that involves a delay) is eliminated
from the respective subsystem, its input (the derivative)
becomes an output of the modified subsystem, and its
output (the integrated value) is treated as the input to the
remainder of the computation, if there is any. Figure 4
illustrates this procedure.
Simulation freaks are usually horrified by this change in
the model and suspect that it eliminates the dynamics of
the system. However, this fear is not justified and results

from a procedural view on dynamic systems as it is
represented by the Simulink model. Nobody would claim
that the set of differential equations

d/dt x = a*y
d/dt y = b*x

does not capture the dynamics of the system, just because
it does not mention integration.

 x
1

 x
2

x
3

f
1

f
2

f
3

f
4

f
5� y

Subsystem17

f
1

f
2

f
3

x
1

x
2

x
3

dy1

dt
f
4

f
5

 yy1

Subsystem17a Subsystem17b

Figure 4 Eliminating integration steps

From the simulation model that corresponds to the
equations, we obtain two blocks for abstraction as
i llustrated in Figure 5.

*a � *b �

dx
dt x

dy
dt

y

y *a
dx
dt x *b

dy
dt

Figure 5 The restructur ing of the simulation model
yields the differential equations as blocks

They correspond to the equations to be abstracted, and,
hence, exactly the intended result will be produced.
Stated differently: the integration blocks in the
simulation model do not capture anything that is specific
to the modeled system, but only (the implementation of)
the general simulation algorithm which is totally
independent of this system. For the abstract model, they
would have to be replaced by a qualitative simulation
algorithm rather than a model fragment.
Parameters that occur in the subsystems, such as the
coefficients a and b in the example, are treated as
subsystem inputs. After these modifications to the
Simulink model, we can apply the abstraction procedure
to the resulting subsystems (which possibly miss some
connections via integration blocks) and obtain the

abstract relation of the entire Simulink model as the join
of the abstract relations of the various subsystems. In our
implementation, we use MATLAB/Simulink to compute
the tuples of the abstract relation (i.e. the output values at
the corners, their minima and maxima and the consistent
qualitative output values) and store these tuples as a
constraint in the modeling framework of RAZ’R
([RAZ’R 02] which is based on ordered multiple decision
diagrams (OMDD).
This implementation has been applied to examples of car
subsystems including a model of the air intake of a
vehicle that had been developed for control purposes. In
these exercises, a lot of difficulties had to be overcome,
and we think that some of the problems, although quite
fundamental to qualitative modeling, have not
sufficiently or not at all been addressed by the research
community. In the following, we discuss some of the
major problems that occurred in order stimulate
discussion and work on these issues.
Our goal is to automatically generate a qualitative model
for diagnosis, and we distinguish two sets of problems,
namely related to
- the generation of a qualitative model and to
- the generation of a diagnostic model.

4. Practical Obstacles to Automated Model
Abstraction

4.1 Computational Complexity
The first obstacle one faces is a fairly obvious one: the
combinatorial explosion that lurks in the algorithm. In
the air intake example, the model contains 9 subsystems
at the top level (corresponding to components). Four of
them have 7 inputs, two others have 5 and 6,
respectively. Even if each variable domain had only 10
landmarks, The computation of the output for 107
landmark combinations is not feasible. Furthermore, the
output value of each landmark combination is needed for
qualitative tuple generation of up to 2n qualitative input
value combinations, where n is the number of input
variables. Caching of these computed outputs has its
limitation, and beyond this, re-computation cannot be
avoided.
In response to this, subsystems with many inputs had to
be split into a number of subsystems with less inputs. In
our experiments, we handled blocks with up to three
inputs and around 60 landmarks. This lead to runtimes of
several hours, which does not necessarily constitute a
serious obstacle when compared to the time spent on
writing diagnostics by hand. However, other effects
matter: in general, „smaller subsystems“ implies longer
computational chains of subsystems connected by
intermediate variables.

4.2 The Curse of Intermediate Var iables
This situation raises two problems.

First, due to the finite granularity of the domains of
intermediate variables, „rounding er rors“ occur at the
interface of two subsystems. This happens because the
output for a landmark combination does, in general, not
hit a landmark of the output. The rounding error on
average amounts to one qualitative value (interval) of the
output, and it is guaranteed. The errors of several inputs
of a subsystem combine, and they accumulate along the
computational chain. If we assume such a chain
consisting of k subsystems whose (single) output is a
l inear combination of its inputs, the rounding error
amounts to the sum of the width of k intervals. When a
subsystem (component) with n inputs is decomposed into
smaller subsystems with, say two inputs each, the number
of these subsystems, k, may well be in the order of n. If
�d�denotes the cardinality of the output domain, then
the overall result of the l inear combination with the
rounding error included will cover the entire domain
with a ratio of k/�d�. For the case of non-linear
subsystems, it can be worse. For instance, the
decomposed components in our examples had up to 13
subsystems which means that even with, say, 30
landmarks, the abstracted model will hardly yield any
restrictions. Hence, we need to increase the number of
landmarks.
This leads to the second problem: determining
appropriate sets of landmarks.

4.3 Fundamental: How to Determine Initial
Landmarks?

Here, the first question to answer is what range to cover
with the landmarks. While the input and output variables
of components usually have some physical meaning that
helps to guess the possible range, this is not the case for
the intermediate results of the computation. This makes
it extremely difficult to guess the range of the values that
can occur. This holds even more, if we want to derive a
model for diagnostic purposes, since we have to make
sure that this range does cover all possible conditions,
including fault situations. Actually, this also applies to
many component inputs and outputs: for instance, how
can we estimate what values the derivative of some
unmeasured pressure at the interface of two components
can take on under the sudden occurrence of a leakage?
To some extent, the answer lies in the model: together
with the ranges of input variables it determines the
possible range of the output. For monotonic functions, we
can easily compute the extreme points, and this is what
we actually partly did in our experiments. However, the
Simulink model can (and, in practice, usually will)
contain not only nonlinear analytic functions, but also
tables with empirical data and even black-box model
fragments with C code which makes it extremely difficult
or impossible to compute the extreme points in a
deterministic way. One will have to run simulations on
real data and determine the extreme points occurring,
and also this we did. Obviously, there is no guarantee for
covering of the range of behaviors, and this holds even

more when the model has to cover all possible fault
situations (see also the discussion in section 4.6).
Under these circumstances, the second problem is even
harder to solve: the selection of landmarks within the
decided range. For physical variables, domain experts
may be able to propose some important distinctions as
candidates for landmarks. But these are unlikely to
suffice, and for intermediate variables, there is hardly
any alternative to choosing landmarks by an equidistant
partitioning of the range. Unfortunately, this enforces
again the introduction of many landmarks in order to
avoid large rounding errors, because under this goal, the
number of landmarks is determined by smallest
distinctions required.
Another incarnation of the landmark selection problem
occurs in the frequent case where there are certain given
landmarks for the output and for some inputs of a
subsystem, and appropriate landmarks for the other
inputs should be determined. While for AQUA, this is a
non-problem due to the relational representation, we
become a victim of the directionality of the Simulink
model which does not allow to compute inputs from
outputs. Again, the only compensation is to select a fine-
grained partitioning of the input domain.

4.4 Discussion of the Dilemma
In summary, there is a „positive feedback“ loop in the
interdependencies among the problems discussed which
can be summarized as follows:
1 If we have no „ informed method“ for selecting

landmarks, we have to select equidistant ones.
2 If we choose equidistant ones, in order to avoid

rounding errors, we have to choose many.
3 If we choose many landmarks, we have to reduce the

number of inputs due to the combinatorial
complexity.

4 A reduction of the number of inputs leads to more
subsystems and more intermediate variables.

5 For the intermediate variables, there are no clues for
the landmarks (→ 1.).

6 More intermediate variables introduce more
locations for rounding errors, hence more landmarks
are necessary (→ 2.).

As a result, we have a positive feedback influence on
complexity, and for some of the examples we considered,
this rendered a solution infeasible, so far. In addition, the
model becomes more complex both in terms of its
structure and the landmark sets. This turned the steps
that required our intervention (such as determining
ranges) more cumbersome and error prone.
But perhaps a solution l ies in the opposite direction:
work with few landmarks, abstract larger blocks with
more inputs and, thus, avoid rounding errors. We did not
find much evidence that this is possible for interesting
examples, because any starting point in terms of chosen
landmarks raises the third issue and enters the cycle.
Main reasons for this lie in the fact that, for many
variables, no a priori selection of good landmarks seems

possible, and that the form of the simulation model,
especially its directed computation, prevents to obtain
them.

4.5 Refinement instead of Abstraction
– A Solution?

The problems discussed above are significant. They are
not related to the automated abstraction procedure
AQUA itself, but to the step of creating its basis, a finite
relation which is fine-grained enough to preserve the
required distinctions. These difficulties could be avoided
if we go the opposite way: start with a coarse model and
refine it where necessary (see [Sachenbacher 01]).
The basic idea can be described as follows: for each
variable of a subsystem, we determine some (small)
initial set of landmarks and generate the respective
abstract relation as described above. If a qualitative value
of some variable occurs in many tuples, it is identified as
a candidate for refinement and split into two or more
intervals by the introduction of additional landmarks.
Then relation abstraction is applied using the extended
landmark set, and this is repeated until we end up with a
satisfactory model granularity.
As an illustration, consider the function envelope
displayed in Figure 6. As the abstract relation shows, qx3
occurs in 5 tuples and, hence, will lead only to weak
predictions of the value of y.
A closer look at this approach reveals a number of
problems and caveats:
- The outcome strongly depends on the choice of

initial landmark sets.
- The question arises which var iables are subject to

refinement. For instance, qy6 occurs in 6 tuples. If i t
is refined, this might also trigger a further
refinement of qx3 ... qx8 which may lead to more
landmarks of y and so forth.
y

x

lx1 lx2 lx3 lx4 lx5 lx6 lx7 lx8

qxqx1 qxqx2 qxqx3 qxqx4 qxqx5 qxqx6 qxqx7

lyly1

lyly2

lyly3

lyly4

lyly5

lyly6

lyly7

qyqy1

qyqy2

qyqy3

qyqy4

qyqy5

qyqy6

qxqx8

lx9

Figure 6 Abstract relation (shaded rectangles)
cover ing the envelope of the numer ical function

- It is not obvious whether the process terminates
before reaching the granularity of the original
relation and which termination criteria are
appropriate.

- qy2 occurs in 5 tuples, but a refinement of this
qualitative value may not be necessary, because not
all of them are adjacent.

- Finally, without a detailed analysis of the original
relation, some useless refinement steps might be
attempted. For instance, qx7 would be divided
although this will not provide any benefit. The
problem is how to detect this. That a first split of the
interval results in qualitative values that are
consistent with the same qualitative values of y does
not suffice: This criterion would also stop the
refinement of qx3, although this wil l eventually yield
a useful refinement.

The key concepts for addressing these issues are the same
as for task-oriented qualitative abstraction: target
distinctions and observable distinctions, since both limit
the refinement to be performed: refinement below
observable distinctions does not make sense, and also the
refinement of target distinctions is excluded unless
required by some other target distinction.
Thus, the refinement strategy could be stated informally
as follows:
1. For target variables, choose the target distinctions,

for other landmarks, choose few landmarks well
above the observable distinctions and make this the
current landmark set L curr .

2. Generate the abstract relation, R(Lcurr) for the
current set of landmarks.

3. For all tuples qobs=(qobs,1, ... , qobs,k):
Compute the target index, i.e. the maximal
number of adjacent qualitative target tuples that
are consistent with qobs.
Compute also the target indexes of the landmark
tuples that are corners of qobs.

I f the target index of qobs differs significantly
from the indexes of its corners,
 Then For all j
 I f qobs,j has a refinement above the
 observable distinctions,
 Then add l landmarks for qobs,j to Lcurr.

4. If Lcurr has changed, go to 2
5. Perform task-dependent model abstraction on

R(Lcurr).

There are some issues and problems in this solution that
need explanation and discussion:
- The index of qualitative values and landmark tuples

is a measure of the imprecision of the predictions
that can be derived from them (namely the size of
the entailed disjunction). For instance, the index of
lx4 in Figure 6 is 1 (because it is consistent only with
qy6), while the one of lx7 is 6. The idea is that the
index of landmark tuples reflects the inherent
imprecision of the model (because landmarks
represent „exact input“) and that the indexes of the
landmark tuples that are corners of a qualitative
value can be used as a reference for its own index. It
cannot be smaller than the minimum of the „corner
indexes“, but should not be significantly greater than

the maximum. This idea supplies a set of possible
heuristics for deciding whether or not splitting a
qualitative value promises to create a model that
improves the determination of target distinctions.
Such a heuristic would suggest to split qx3 (its index
5 is significantly greater than the index 1 of its
corners) but not qx7 whose index of 6 is equal to its
corner indexes.

- The deviation of the index of a qualitative value
from its corner indexes could also be used for
determining the number of landmarks to be
introduced in one step.

- However, there remains the problem where to place
the additional landmarks. The example of qx6 shows
that a half-split approach or, more generally, the
introduction of equidistant landmarks may generate
many useless landmarks and many iterations. Again,
a more informed choice of the additional landmarks
would require a more detailed analysis of the
functional interdependency and is either in conflict
with the goal of automation or bears a significant
increase in the computational efforts.

- Running abstraction (step 5) is necessary in order
to eliminate both ineffective distinctions that might
have been introduced in the refinement phase and
previous landmarks that may have become obsolete.
One might be tempted to perform this after each
refinement step in order to avoid computations in
subsequent steps. But this comes at the price of some
bookkeeping that prevents the algorithm from re-
introducing the discarded landmarks. This does not
apply to the second kind of elimination, though.

In summary, there are serious problems and complexity
traps lurking also in a realization of the refinement
approach sketched above as an alternative to abstraction.
A closer and more formal analysis and experiments are
required in order to determine its feasibili ty and practical
value.
Finally, it is worth noting that, in a sense, the algorithm
outlined above, in omitting a refinement of target
distinctions is based on an implicit assumption about the
completeness of the predictor that uses the resulting
model. As an il lustration of this fact, consider the trivial
example of a system that is composed of two equality
constraints: x=y and y=z where x is observable with the
integers as a landmark set, y has a target distinction { [-∞
, 0], [0, ∞]} , and z’ s target distinction is given by the
landmark set { -1, 0, 1} . If the predictor for the abstract
model uses local propagation via y (or the join of the
individual abstracted relations) to determine z, it is
necessary to introduce the landmarks -1 and 1 for y,
while this is not necessary if we operate on the
abstraction of the join of the fine-grained equality
relations.

4.6 Problems in Generating a Qualitative
Diagnostic Model

The difficulties discussed above are independent of the
particular purpose of the model and its abstraction. In our
application, the abstract model is meant to support
diagnosis-related tasks. This creates additional
requirements, and we met further difficulties in the
attempt to satisfy these model requirements based on
simulation models that were originally developed for
purposes of control. We list the most important problems
we encountered.
1 Needed: a component-or iented model. For

achieving the simulation of the system behavior, the
component structure of the respective device is fairly
irrelevant. As a result, the subsystem structure of the
model does not necessarily reflect the component
structure of the device. For instance, a certain pipe
might not occur at all in this model. But if diagnosis
has to consider the possibility of a leakage or
clogging, the component has to represented and
modeled.

2 Needed: Preservation of the physical structure. A
typical example of a violation of this requirement is
that input and output flow of an aggregate device
were identified by an equations which, again, is based
on the assumption of normal behavior (no leakage
occurring).

3 Needed: models of faulty behavior . They are
required if we are not only interested in fault
detection, but fault (class) identification (as in on-
board diagnostics), diagnosability analysis, and
FMEA. As long as control is considered as
controlling the device under normal conditions, faults
are not considered in the development of the control
algorithms. As a result, they are not part of the
respective simulation model. Extending this to
include fault models is not always trivial. If faults
correspond to deviating parameters, it is fairly
straightforward, but in the general case, faults may
change the structure of the model radically. For
instance, introducing a pipe with the potential to have
a leakage means introducing another state variable
and affecting the possibil ity to simulate the model.

4 Needed: a physically cor rect simulation model.
Since the diagnosis approach is based on identifying
discrepancies between a certain behavior mode (OK
mode or some fault) and the respective model, i t is
crucial that the real physical behavior is actually
covered by (the envelope of) the model. If this is not
the case, e.g. because the error functions ε-, ε+ are
difficult to estimate, diagnosis runs the risk of
detecting model faults rather than component faults
and, hence, of generating wrong diagnoses. While we
may assume that the normal behavior is properly
covered if the model satisfies the needs of control, it
also has to correctly model the behavior if a fault
occurs. We found many examples where the models
of components were based on an implicit assumption

about overall normal behavior. This may be addressed
by an appropriate modeling methodology. However,
there is a serious limitation: in particular for complex
components, we may lack first principles models, and
the simulation model contains characteristic maps
that contain empirical data. In this case, the
conditions under which these date were obtained
(typically normal conditions) are compiled into the
model in a way that is hard or impossible to detect.

We should note that only few of these difficulties really
stem from an inappropriate modeling process or
modeling faults. Rather, it is the purpose of the
simulation models, namely simulating correct behavior
for control purposes, that is in conflict with the
diagnostic requirements. Without integrating the views
and the work processes concerning system development
for control and diagnosis, this will be difficult to change.

5. Conclusions

The exploitation of model-based systems in industry wil l
greatly depend on the (additional) modeling efforts they
require. This lead us to the attempt of reducing these
efforts by automated conversion of existing simulation
models into abstract models suited for model-based
problem solvers. The problems we encountered and
described in this paper are significant, concerning both
the automated model abstraction and the generation of a
diagnostic model. One origin l ies in unsolved theoretical
and technical problems, and one purpose of this paper is
to stimulate research into these problems. But one also
has to realize that another class of problems is due to
„cultural“ , educational, and organizational issues which
are, at least, equally difficult to overcome.

Acknowledgements

Many thanks to all partners in the IDD project and, in
particular, to Oskar Dressler, Michael Esser, and
Alessandro Fraracci for their contributions to this
experiment. The reviewers provided useful comments.
This work is supported by the Commission of the
European Union (Project no. G3RD - CT199-00058).

References

[Brignolo et a. 01] R. Brignolo, F. Cascio, L. Console, P.
Dague, P. Dubois, O. Dressler, D. Millet, B. Rehfus, P.
Struss. Integration of Design and Diagnosis into a Common
Process. In: Electronic Systems for Vehicles, pp. 53-73.
VDI Verlag, Duesseldorf, 2001.

[Cascio et al. 99] F. Cascio, L. Console, M. Guagliumi,
M. Osella, A. Panati, S. Sottano, D. Theseider-Dupré:
Strategies for on-board diagnostics of dynamic
automotive systems using qualitative models, AI
Communications, June 1999.

[RAZ’R 02] Raz'r Version 1.6, Occ'm Software GmbH,
see http://www.occm.de/

[Sachenbacher-Struss-Weber 00] M. Sachenbacher, P.
Struss, R. Weber: Advances in Design and
Implementation of OBD Functions for Diesel
Injection Systems based on a Qualitative Approach to
Diagnosis, SAE World Congress, Detroit, USA,
2000.

[Sachenbacher 01] M. Sachenbacher: Automated
Qualitative Abstraction and its Application to
Automotive Subsystems. PhD thesis, Technical Univ.
of Munich, Computer Science Department, 2001

[Sachenbacher-Struss 01] M. Sachenbacher, P. Struss:
AQUA: A Framework for Automated Qualitative
Abstraction. In: Working Papers of the 15th
International Workshop on Qualitative Reasoning
(QR-01), San Antonio, USA, 2001

[Struss 02] P. Struss: Model-based Tools for the
Integration of Design and Diagnosis into a Common
Process - A Project Report. In: Working Papers of the
13th International Workshop on Principles of
Diagnosis (DX02), Semmering, Austria, 2002.

