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Abstract

Automated problem-solving for engineered devices
is based on models that capture the essential as-
pects of their behavior. In this paper, we deal with
the problem of automatically abstracting behavior
models such that their level of granularity is as
coarse as possible, but still sufficiently detailed to
carry out a given behavioral prediction or diagnos-
tic task. A task is described by a behavior model,
as composed from a library, a specified granularity
of the possible observations, and a specified gran-
ularity of the desired results. The goal is to de-
termine partitions for the domains of the variables
(termed qualitative values) that are both necessary
and sufficient for the task at hand. We present a
formalization of the problem within a common re-
lational (constraint-based) framework, present re-
sults regarding solutions to task-dependent quali-
tative domain abstraction, and devise methods for
automatically determining qualitative values for a
device model.

1 Introduction

Model-based systems ([Hamscher et al., 1992; Weld and de
Kleer, 1990]) represent knowledge about the structure and be-
havior of a physical system in terms of a behavior model,
and use it to support engineering tasks such as behavior pre-
diction, diagnosis, planning and testing. When constructing
model-based systems, one of the most difficult parts is mod-
eling the device. A fundamental idea to support and facilitate
modeling is to compose models from model fragments, that
is, re-usable elements of knowledge about a device that can
be organized in a library ([Falkenhainer and Forbus, 1991]).
This requires that model fragments have to be formulated,
as far as possible, in a generic way and independent of their
specific application context. However, it also means that in-
formation about the task a model will be used for cannot be
anticipated in the model fragments.

But a model needs to be suited for the problem-solving
task at hand in order to provide an effective and efficient
solution to it. Using always the most accurate and most
detailed model available may make the respective problem-
solving task intractable, or at least unnecessarily complex and

resource-consuming. For instance, for the task of diagnosing
a device in an on-board environment, it is crucial to have a
model that focuses only on those aspects that are essential to
the goal of discriminating between its normal and faulty be-
havior. Any unnecessary details that are not relevant to this
task impair its ability to meet the stringent time and space re-
quirements of this application. In general, models straightfor-
wardly composed from a library tend to be either inefficient,
because they are overly detailed (that is, too fine-grained), or
ineffective, because they are not detailed enough (that is, too
coarse-grained) for the task they will be used for.

The approach pursued in this paper is therefore to auto-
matically re-formulate a behavior model, after it has been
composed, to a level of abstraction that is adequate for the
specified task. We focus on the abstraction of the domains of
variables, that is, the problem of deriving sets of meaningful
qualitative values. Although some work has been carried out
on finding qualitative values within a specific context, such as
simulation ([Kuipers, 1986]), the general problem of charac-
terizing and systematically deriving qualitative values for an
arbitrary relational (constraint-based) behavior model is a rel-
atively unexplored area. However, much of the work in quali-
tative reasoning about physical systems ([Weld and de Kleer,
1990]) relies on this type of abstraction. The resolution of a
behavior model' s domains has a strong effect on the size of
the model, the efficiency of reasoning with the model, and
the size of the solutions. Furthermore, within an on-board or
real-time setting, the number of qualitative values determines
how many of the observations will be qualitatively different,
and therefore it influences the frequency at which reasoning
has to be initiated at all.

1.1 Example

Consider, for example, the system depicted in figure 1. The
device is a simplified version of a pedal position sensor used
in a passenger car. Its purpose is to deliver information about
the position of the accelerator pedal to the electronic control
unit (ECU) of the engine management system. The ECU uses
this information to calculate the amount of fuel that will be
delivered to the car engine.

The pedal position is sensed in two ways, via the poten-
tiometer as an analogue signal, ������� , and via the idle switch as
a binary signal, �����
	����� . The idle switch changes its state at a
particular value ����� ���
	������	���� of the mechanically transferred
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Figure 1: The Pedal Position Sensor

pedal position. The reason for the redundant sensing of the
pedal position is that the signals 9;:�<�= and 9�>�?A@�=�B�C are cross-
checked against each other by the on-board control software
of the ECU. This plausibility check is a safety feature of the
system, in order to avoid cases where a wrong amount of fuel
injected evokes dangerous driving situations.

Assume we want to perform the plausibility check between
the electrical signals 9;:�<�= and 9�>�?A@�=�B�C automatically by the
means of a behavior model of the system. For the potentiome-
ter model fragment, this requires a distinction in the domain
of 9;:�<�= that corresponds to the switching point DFE�GH>�?A@�=�B�CI@�J0K
of the switch. This is the only distinction in this domain that
is required for the purpose at hand.

The problem is that this particular distinction cannot be an-
ticipated in a generic model fragment of the potentiometer
component, because it would not make any sense in a dif-
ferent structure. It is only the specific combination of the
potentiometer and the switch together with the pursued task
that requires this distinction. In contrast, other tasks such as
control or design might require more detailed domains that
would allow to relate the position of the switch to particular
potentiometer voltages.

The problem is important, because it impairs the idea of
using a model of the pedal position sensor as a common basis
for different tasks. For engineered systems, it is typical that
several tasks along the product' s life cycle — such as fail-
ure modes and effects analysis (FMEA), on-board diagnos-
tics development, generation of repair manuals or workshop
diagnosis — share a significant amount of common knowl-
edge about the behavior of the system under consideration.
It would be inacceptable having to manually create models
from scratch that are tailored to each of these tasks.

2 Task-dependent Distinctions

The example above has confronted us with the problem that
simply picking model fragments from a library and compos-
ing the model is not enough. It is infeasible, in general, to an-
ticipate the required granularity in the domains of variables.
Therefore, the ability to transform the domains to the right
level of abstraction after composing the constraints of the
model is a highly practical requirement. It means grouping

together those domain values whose distinction is irrelevant
for the task at hand.

The core idea of distinctions between domain values be-
ing redundant is captured by the concept of interchangeabil-
ity, first proposed by Freuder ([Freuder, 1991]). For a con-
straint satisfaction problem that consists of a set of variables,
domains and constraints on these variables, two values 90L0M�N ,
90L0M�O of a variable 9 are said to be fully interchangeable, if for
any solution where 9QPR90L0M�N , substituting 9QPR90L0M�O produces
another solution, and vice versa. That is, solutions involving
90L0M�N ( 90L0M�O ) are identical to solutions involving 90L0M�O ( 90L0M�N )
except for the value 90L0M�N ( 90L0M�O ) itself.

Interchangeable values define equivalence classes on the
domains of the variables, and grouping them together corre-
sponds to an abstraction of the constraint satisfaction problem
that exactly preserves the set of its solutions. Freuder and
Sabin ([Freuder, 1991], [Freuder and Sabin, 1995]) already
observe that interchangeability is related to abstraction and
the formation of “semantic groupings” within the domains
of variables. However, it is also known that in practice, in-
terchangeability of domain values does not occur very fre-
quently.

A model-based problem solving task, such as behavioral
prediction or diagnosis, can be cast as an instance of a con-
straint satisfaction problem. However, it is particular in two
respects:

(1) the input consists not only of the model, but also of the
observations that it is confronted with, such as measure-
ments, hypothetical situations, etc. Typically, observa-
tions are restricted because not all of the variables in the
device model are observable, or because domain values
cannot be observed beyond a certain granularity.

(2) the output involves not all feasible assignments of do-
main values to variables, but only certain aspects of the
solutions are required. Typically, we might be interested
in knowing whether values remain below or exceed a
certain threshold, or what the values of mode variables
of components are (for a diagnostic task), etc.

The idea pursued in this paper is to generalize the basic prin-
ciple of interchangeability, leveraging on this specific context
of a model-based problem solving task. The notion of a task
is captured as (1) observable distinctions that express what
inputs to the problem solving process (for example, observa-
tions) can occur, and (2) target distinctions that express what
aspects of the outcome we are after. They can be exploited to
obtain so-called induced abstractions — domain abstractions
that go beyond the low, generic level of interchangeability,
but are still adequate for the given task.

We pursue the approach in the context of general, rela-
tional models that are not limited to restricted cases such as
linear relationships or monotonic functions. A relational (or
constraint-based) behavior model is a subset
SUTRVXWZY\[�]_^ P VXWZY\[ 90N ^�`aVXWZY\[ 9�O ^�`cbHbHb�`aVXWZY\[ 9HJ ^
that restricts the possible combinations of values for the vari-
ables

] P [ 90N�d;9�O�d bHbHb d;9HJ ^ , where
VXWZY\[ 9H@ ^ denotes the do-

main of a variable 9H@ . We use join
[�e�f0^

, projection
[�gh^

, and
selection

[�iA^
as operators on relations.

383DIAGNOSIS



Consider again the device shown in figure 1. Assume that
the domain is�

[0V,2V), [2V,4V), [4V,6V), [6V,8V), [8V,10V) �
for variables involving voltage and�

0%, 20%, 40%, 60%, 80%, 100% �
for variables involving position, and that the only parameter
in the system, �������
	������������� , equals 40%. Then the device can
be modeled by a relation � that consists of 10 tuples:

�����  ��������������� � �
	������� . . .

[0V,2V) 0%, 20% [0V,2V) . . .
[2V,4V) 20%, 40% [0V,2V) . . .
[4V,6V) 40% [0V,2V) . . .
[4V,6V) 60% [8V,10V) . . .
[6V,8V) 60%, 80% [8V,10V) . . .
[8V,10V) 80%, 100% [8V,10V) . . .

Observable distinctions reflect the measurement granular-
ity or incomplete observability of variables. An observable
distinction for a variable is expressed as a partition of its do-
main:

Definition 1 (Observable Distinction) An observable dis-
tinction for a variable � � , denoted  �
! ��" � , is a partition of its
domain #%$'&)( � �
* .
A variable � � is not observable at all if  �
! ��" � is equal to
the trivial domain partition  +�,���-�" �/. 0 � #%$'&)( � �
*�� . For in-
stance, the fact that for the pedal position sensor, the control
unit observes the signal �����  and the signal � �
	������� can be
expressed by the observable distinction

 �
! ��" -�1�2
3 =
���

[0V,2V) � , . . . ,
�
[8V,10V) ��� ,

 �
! ��" -�4�576 3�8�9 =
���

[0V,2V) � , . . . ,
�
[8V,10V) ��� ,

whereas all other variables receive the trivial domain parti-
tion.

Target distinctions reflect the granularity of solutions we
are after. Analogously to observable distinctions, target dis-
tinctions are expressed as domain partitions:

Definition 2 (Target Distinction) A target distinction for a
variable � � , denoted  +�:�,���" � , is a partition of its domain
#%$'&)( � �
* .
A variable � � is said to have no target partition, if  +�:�,���" �
is equal to the trivial partition. For instance, the target dis-
tinctions for the pedal position sensor are determined by the
goal to distinguishbetween the domain values for the variable� �
	������� (the plausibility check itself is not represented in the
model):

 +�:�,���" -�4�576 3�8�9 =
���

[0V,2V) � , . . . ,
�
[8V,10V) ��� .

2.1 Domain Abstractions

A domain partition  +� can also be understood as a domain
abstraction

; �<.�#%$'&)( � �
*>=?#%$'&A@�( � �
*<BDC�E<F�GIH -�6 J
that maps elements ��K�L from a base domain #%$'&)( � �
* to a
transformed domain #%$'& @ ( � ��* that consists of sets of values
from the base domain such that ��K�LNMO; ��( ��K�L * . Abstractions

can be straightforwardly extended from single values to sets
of values, by taking the union of the resulting sets. For two
abstractions ; � and ; @� , ; � is a refinement of ; @� , ifP ��K�LQM #%$'&)( � ��*<. ; ��( ��K�L *NB ; @� ( ��K�L *�R
Two abstractions ; � , ; � ' are comparable, if ; � is a refinement
of ; � ' or ; � ' is a refinement of ; � . We apply the notion of
refinement and comparability equally to abstractions and do-
mains. A vector of domain abstractions is denoted

S 0T( ;�U�V�;�W�V R�R�R V�; �+*�R
A domain abstraction S is a refinement of S>X , if every ; � is a
refinement of ; @� . Two abstractions S , S>X are piecewise com-
parable, if every ; � is comparable with ; @� . If a join opera-
tion combines two relations that are defined on different, but
piecewise comparable domains, we define, for convenience,
that the result is a relation over the finer domains.

3 Qualitative Abstraction Problems

Given this representational apparatus, we can now formally
define the problem of task-dependent qualitative abstraction.

Definition 3 (Qualitative Abstraction Problem) Let � be
a relational behavior model, $'Y'Z a set of external restric-
tions, S>�
! � a domain abstraction defined by observable dis-
tinctions, and S �:�,�� a domain abstraction defined by target
distinctions. The qualitative abstraction problem consists of
finding an induced domain abstraction S ���7[ such that:

(1) (Adequacy) For all external restrictions � �
! � M $'Y'Z ,
� �
! �<BD#%$'&)(�\]* ,S �:�,��7(��D^
_ S>�
! ��(�� �
! ��*�*>0S �:�,��7( S ���7[�(��`*Q^
_ S ���7[�( S>�
! ��(�� �
! ��*�*�*�R

(2) (Simplicity) If S ���7[ is a refinement of a domain abstrac-
tion S ���7[ ' and S ���7[ ' fulfills (1), then S ���7[ = S ���7[ ' .

The first condition (adequacy) states that the abstracted
model S ���7[�(��`* derives a solution on the level of target dis-
tinctions, if and only if the original model � derives the same
solution on the level of target distinctions. We require this
to hold for all the possible external restrictions (actual obser-
vations, design specifications, etc.) on the level of observ-
able distinctions. This guarantees that for any external re-
striction that can occur, the abstracted model will yield the
same results as the original model. That is, if we apply S ���7[
before carrying out our problem-solving task, it won' t affect
the result because this abstraction incorporates all the distinc-
tions that are necessary for this task. As a consequence, we
can substitute the abstracted model S ���7[�(��`* for the original
model � in problem solving.

In general, there may be many domain abstractions that ful-
fill the adequacy criterion. In particular, the identical domain
abstraction S ��[ that retains all the distinctions in the model
is an adequate abstraction according to the definition. How-
ever, among all adequate abstractions, we prefer those that
are the “simplest” ones. Simplicity of an adequate abstrac-
tion is defined in the second condition of definition 3. The
approach taken is to select the abstractions that are coarsest
in the sense that there exits no other adequate abstraction of
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which they would be a strict refinement (an abstraction that
would further merge at least two of the qualitative values). A
domain abstraction that is both adequate and simple incorpo-
rates only distinctions that are both necessary and sufficient
according to the target and observable distinctions. It rep-
resents a level of abstraction that neither makes any unnec-
essary distinctions, nor abstracts away any distinctions that
are crucial to solve the problem. Definition 3 thus formal-
izes the problem of finding qualitative values for the domains
of variables. Compared to interchangeability, which is con-
cerned with possibilities for abstraction within a single prob-
lem instance only, a qualitative abstraction problem (QAP)
describes a whole class of instances defined by a model re-
lation, a set of external restrictions, and the task-dependent
distinctions. Interchangeability enforces that the set of so-
lutions remains the same as for the original model. A QAP
generalizes (or relaxes) this basic principle and demands that
the set of solutions remains the same but only on the level of
target distinctions, and only for inputs on the level of observ-
able distinctions.

Definition 4 (Properties of QAP) A QAP with a set of ex-
ternal restrictions ����� is said to be obs-complete, if�����
	�������
	����������
	���� ������� = � ���
����� �! #"$� %'&(& . It is
said to be sol-complete, if for all )�* : +�,�-�.�/�0 * �1 ��2  )�* ���435 * 
��� ,�-�.�/ ��76
89���
	�������
	������9�����
	��:� ������� � .

Obs-completeness means that all the possible observations
on the level of observable distinctions can actually occur or
have to be considered during problem-solving (consequently,
induced abstractions can be derived without knowing the ex-
act set ����� ). Sol-completeness means that all the possible
solutions defined by the target distinctions can indeed be dis-
tinguished based on the model and the external restrictions. In
addition, we demand that

���
	��
and

� ,�-�.�/ are piecewise com-
parable. Note that this is not actually a restriction, because it
can be established for any QAP by possibly introducing ad-
ditional variables that separate the target and observable dis-
tinctions.

Intuitively, under these conditions, we expect that we have
to keep all the target distinctions, because we need them to
distinguish the solutions, but we can eliminate the distinc-
tions between observations that would lead to the same set of
solutions. If QAP is obs-complete, the

�!�
	�������
	��;�
are given

by the possible subsets of
���
	����1 ��2 (%<���

. For each tuple%<=#>
�
	�� 0 ? �����
	����1 ��2 (%'���
, define

�����
@ 0 �
	�� 0 ? to be the solu-
tion it derives on the level of target distinctions:�����
@ 0 �
	�� 0 ?BA C � ,�-�.�/ ��D6
89%<=#>
�
	�� 0 ? �;E
Let

���
	�� 0 F denote the sets of
%<=#>
�
	�� 0 ? that obtain the same

solution, i.e. those for which
�����
@ 0 �
	�� 0 ? is equal:���
	�� 0 FBA C G?�H I �(�
J K �
����K L�M I �(�
J K �
����K N

%<=#>
�
	�� 0 ? E
Then the

���
	�� 0 F form the elements of a partition of���
	����1 ��2 (%'���
:O ��BP��<�
	���P�� ,�-�.�/ � A C G F

�����
	�� 0 FQ� E

Figure 2 shows the resulting partition
O ��BP��<�
	���P�� ,�-�.�/ � for

the pedal position sensor example, given the observable and
target distinctions stated in Sec. 2 (all variables except )�R � ,
and ) �
S *T,(U�V have no distinction and have been omitted from
the figure; values [2V,4V), [4V,6V) and [6V,8V) for ) �
S *T,(U�V
do not appear in

�
and have been omitted from its domain).

WYX Z\[ ] ^ _

WY`�a ]

b c�dfe g�dih
b g�dfe j�dih
b j�dfe k�dih

b c�d�e g�d9h b l;dfe mnc�doh

pb k�dfe l�dih
b l;d�e mnc�d9h

p

q
r

s

tvu w�x

Figure 2: Partition
O ��BP��<�
	���P�� ,�-�.�/ � for the pedal position

sensor example. The partition consists of four elements num-
bered 1, 2, . . . , 4. Applying theorem 1 yields the distinctions
for )�R � , shown on the left-hand side of the figure.

Theorem 1 (Solution to QAP) Let QAP be a qualitative ab-
straction problem that is obs-complete and sol-complete. Let+�y#z�0 {#0 * be the domain abstraction that aggregates the in-
terchangeable values of a relation | , that is, two values)Q}Q~�� P )Q}Q~(� ��1 ��2  )�* � are combined if5 %<������� � �� ��� M�� - @T�� | ��� C 5 %'�������T� �� ��� M�� - @ �Q | ���;E
Then the simplest domain abstraction that is a refinement of+�,�-�.�/�0 * and every domain abstraction

+�y#z�0 {#0 * where | � O ��BP����
	���P�� ,�-�.�/ �
is an induced abstraction for QAP.

For the pedal position sensor example, Theorem 1 derives
three qualitative values for )�R � , (see Fig. 2):�Q�

[0V,2V),[2V,4V) � , � [4V,6V) � , � [6V,8V),[8V,10V) �Q� .
The first qualitative value

�
[0V,2V),[2V,4V) � corresponds

to situations where ) �
S *T,(U�V equals ground voltage, the third
qualitative value

�
[6V,8V),[8V,10V) � corresponds to situa-

tions where ) �
S *T,(U�V equals battery voltage, and the second
qualitative value

�
[4V,6V) � corresponds to situations where

the position of the switch and, hence, the voltage of ) �
S *T,(U�V ,
is ambiguous.

Theorem 1 shows that the basic concept of interchangeabil-
ity plays a central role in the determination of solutions to a
qualitative abstraction problem. In particular, the problem of
finding interchangeable values in a relation can be recast as
a special case of a QAP, where one distinguishes only empty
from non-empty solutions:
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Corollary 1 (Interchangeability as QAP) Let QAP =���������
	���������������
be an obs-complete qualitative abstraction

problem such that
���
	��

=
�����

,
��������

=
��������

. Then ������� ��� � is
an induced abstraction for QAP.

In general, however, the granularity of induced abstrac-
tions is different from the granularity of interchangeable val-
ues.

���� !�
can be either more coarse or more fine-grained than� ����� � . The latter case occurs if target distinctions are speci-

fied between domain values that are interchangeable with re-
spect to the model relation.

Theorem 1 constitutes also a starting point for finding use-
ful approximations of qualitative values. One approach is
to use only necessary conditions for interchangeability. In
order for two domain values to be aggregated by

� ����� " ,
it is necessary that they appear in the same elements of# ���������
	���������������

:

Proposition 1 (Approximate Solution to QAP) Let QAP
be a qualitative abstraction problem that is obs-complete and
sol-complete. Let � �
$�$ � � be the simplest domain abstraction
that is a refinement of � ������ � � and every domain abstraction

������� "&%�� � where ')(+* ,.- ��/�� ' �0� '.1 # ���������
	������+������2�03
Then the induced abstractions are a refinement of � �
$�$ � � .

The approximation
�)�
$�$

considers only the projection of
each ' on the individual variables. This yields a granularity
that is simpler than or equal to the induced abstractions. For
the pedal position sensor example, the distinctions derived by
� �
$�$ � � are identical to those derived by Theorem 1. Obtaining
� �
$�$ � � is easier than determining � �� !� � � , because it involves
only the projection and intersection of sets and does not re-
quire to determine the interchangeable values in ' . However,
because it considers only restrictions for individual variables,
the approximation

���
$�$
is not adequate. In general, a restric-

tion might lead to a different solution only if it is combined
with additional restrictions for the other variables.

4 AQUA: A Prototypic System for

Task-dependent Domain Abstraction

The computation of induced abstractions for a QAP in-
volves, based on the results above, the subproblems of
constructing the model relation

�
, computing the partition# ���������
	���������������

, and determining interchangeable values
within the elements of this partition.

Our prototypic system AQUA (Automated Qualitative Ab-
straction) ([Sachenbacher, 2001]) determines the relation

�
through structural decomposition of the constraint network
that is defined by the set of model fragments it is com-
posed of. The basic principle of structural decomposition
([Gottlob et al., 2000]) is to transform a constraint network
into an equivalent acyclic (tree-structured) instance. AQUA
then iterates over the partition elements of the observable
and target distinctions and labels the tuples of the relation�

that are consistent with the respective partition elements.
Since directional arc consistency is sufficient for establish-
ing consistency in a tree-structured network ([Dechter and
Pearl, 1988]), this step can be performed efficiently by lo-
cal constraint propagation. This step yields the partition

# ���������
	���������������
. Interchangeable values in the partition el-

ements of
# ���������
	������+��������

can then be found using the ba-
sic algorithm described in [Freuder, 1991]. Alternatively, the
partition elements can be projected on the individual variables
to obtain the approximate solution. AQUA also performs fur-
ther optimizations in that it can automatically remove redun-
dant values (domain values that do not appear in any con-
straint) and eliminate variables that have no distinction at all.
The decomposition step is independent of the particular task
in terms of observable and target distinctions; hence, the re-
sulting tree can be re-used for different combinations of ob-
servable or target distinctions.

AQUA builds on components of an existing model-based
reasoning framework that consists of a development system
for composing a device model from of a library of model
fragments, and a runtime system for performing behavioral
prediction and diagnosis based on actual measurements for
the device. Using AQUA, several tasks can be supported
in the context of building model-based systems that are of-
ten carried out manually or solved on an ad hoc-basis. The
common theoretical basis is to find suitable domains for the
variables in a model. However, in different contexts this ba-
sic task can have different interpretations, depending on what
the terms variable and domain refer to, including magnitudes,
modes of components, and deviations from reference behav-
iors ([Sachenbacher, 2001]).

In a larger, real-world application taken from the automo-
tive domain [Sachenbacher et al., 2000], AQUA was used
to obtain abstractions of behavior models of a turbo con-
trol subsystem that involved several hundred (initially, real-
valued) variables. The qualitative level of abstraction of the
derived model was instrumental to meet real-time require-
ments, and allowed for keeping up with the rate of the mea-
surements in an on-board diagnostic context. In this context,
task-dependent abstraction proved useful as a precompilation
method that guaranteed adequacy of the results.

5 Discussion

While several pieces of work have addressed the problem
of automatically deriving appropriate models ([Nayak, 1994;
Levy et al., 1997; Rickel and Porter, 1997]), the work pre-
sented here is distinctive in that it focuses specifically on the
granularity (resolution) of the domain values, and uses rela-
tions and partitions as a common and concise representational
framework. This has several important implications.

The narrowed focus allows us to represent the space of pos-
sible candidate models implicitly and compactly as the space
of possible domain partitions. In contrast, [Nayak, 1994;
Rickel and Porter, 1997] define this space as the possible
combinations of model fragments. Candidate models are
then defined by different choices (selections) of possible frag-
ments. Because in our framework, the difference between
different candidate models is well-defined (by means of op-
erators � � ), we can in contrast take on the view of transform-
ing (re-formulating) models instead of selecting them. The
general relational representation subsumes both infinite and
finite constraints, and is not limited to specific types of con-
straints and special-purpose reasoning methods. It allows
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us to capture the conditions for a solution in a single, con-
cise formula (Definition 3) and, more importantly, allows
to determine the solutions analytically and in closed form
(Theorem 1). In contrast, [Nayak, 1994; Levy et al., 1997;
Rickel and Porter, 1997] all devise search procedures that
start from an initial model and backtrack until they find a so-
lution. In general, it can be said that our limited scope al-
lows us to assume a less knowledge-based, more mathemati-
cal view of automated modeling.

QSIM ([Kuipers, 1986]), a system for performing quali-
tative simulation of device behavior over time, incorporates
methods for refining the domains of variables by deriving
new distinctions (“landmarks”) during the simulation pro-
cess. However, except for signs, the mapping of qualitative
values to their base domain is only partially known, since
only information on the ordinal relationship and knowledge
about values that must be assumed simultaneously (“corre-
sponding values”) is provided. Therefore, the derived distinc-
tions can in general not be used to simplify the model. Ex-
tensions of QSIM that deal with semi-quantitative reasoning
[Berleant and Kuipers, 1997]) allow to further constrain the
landmark values to numeric intervals, but are specific to the
context of simulation, and the constraints are limited to alge-
braic relationships and monotonic functions. For the specific
task of diagnosis, Torasso and Torta [Torasso and Torta, 2002]

recently presented an approach for merging together behav-
ior modes that are indistinguishable, given the granularity of
the observations. However, the method does not incorporate
a notion of target distinctions.

While the theory of task-dependent domain abstraction is
applicable both to finite and infinite domains, an important
area for future work is to efficiently derive induced abstrac-
tions for real-valued base models. [Sachenbacher, 2001] out-
lines a method for iterative refinement of qualitative values
given a real-valued base model. [Struss, 2002] investigates
cases where distinctions can be obtained for monotonic re-
gions of real-valued functions.

6 Conclusion

The increasing complexity of engineered devices has lead to
an increased demand for computer-supported behavior pre-
diction, diagnosis, and testing. Given the maturity and scale
of model-based systems applications, the question of how to
re-use behavior models is of growing interest. It has been
shown that a model composed from a library cannot be ex-
pected to have a level of granularity suitable for different
tasks right away. Instead, the ability to re-formulate the
model after composing it is a crucial requirement. We iden-
tified, within a common relational framework, fundamental
properties of re-formulation that is based on abstraction of
domain values. Observable distinctions and target distinc-
tions allow to capture important aspects of a task. They are
the starting point for deriving qualitative values that are both
adequate for the task and as simple as possible. Our analy-
sis reveals that the degree of domain abstraction that can be
achieved is strongly dependent on the characteristics of the
task. Task-dependent qualitative domain abstraction is a con-
tribution to further bridging the gap between quantitative and

qualitative modeling, as it allows to express knowledge about
component behavior without being committed early to a spe-
cific abstraction level of the domains. It can help to make
model-based system more efficient and more cost-effective
due to automating steps that are currently done by hand.
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