
In: 2nd MONET Workshop on Model-Based Systems at IJCAI-05, July 30, 2005.

Abstract
Testing embedded software systems on the control
units of vehicles is a safety-relevant task, and
developing the test suites for performing the tests on
test benches is time-consuming. We present the
foundations and results of a case study to automate
the generation of tests for control software of
vehicle control units based on a specification of
requirements in terms of finite state machines. This
case study builds upon our previous work on
generation of tests for physical systems based on
relational behavior models. In order to apply the
respective algorithms, the finite state machine
representation is transformed into a relational model.
We present the transformation, the application of
the test generation algorithm to a real example, and
discuss the results and some specific challenges
regarding software testing.

1 Introduction
Over the last decade or so, cars have become a kind of

mobile software platform. There are tens of processors
(Electronic Control Units, ECU) on board of a vehicle; they
are communicating with each other via several bus systems,
and software has a major influence on the performance and
safety of a vehicle. The software embedded in the mechanical,
electrical, pneumatic, and hydraulic car subsystems becomes
increasingly complex, and it comes in many variants,
reflecting the context of different types of vehicles, the
manufacturer-specific physical realization, versions over
time etc. Testing such embedded software becomes
increasingly challenging and has been moving away from
test drives under various conditions to automated tests
performed on test benches which can partly or totally
simulated the car as a physical system.

 But for the reasons stated above, namely complexity of
the software and its variation, generating the test suites
becomes demanding and time consuming and demands for
computer support. Automating the generation of such tests
based on a specification of the desired behavior of the
software together with the physical system promises benefits
regarding both the required efforts and the completeness of
the result.

In [Struss 94, 94a], we presented the theoretical and
technical foundations for automated test generation for
physical systems based on models of their (nominal and
faulty) behavior. Such behaviors are represented as (finite)
relations over system variables which characterize the
possible states under different modes of behavior. On this
basis, tests can be computed as sets of stimuli that trigger
disjoint projections of the behavior relations to the space of
observables.

Model-based Test Generation for Embedded Software

M. Esser1, P. Struss1,2
1 Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany

2 OCC’M Software, Gleissentalstr. 22, D-82041 Deisenhofen, Germany
{esser, struss}@ in.tum.de, struss@ occm.de

An extension of this approach to cover also software
would be highly beneficial, because it would provide a
coherent solution to testing both physical systems and their
embedded software. More concretely, the software test could
start from a specification of the intended behavior of the
physical system, and also the tests could reflect the particular
nature of the embedded software, namely using stimuli and
observations of the physical system rather than directly of the
software system.

The case study described in this paper concerns a real-life
example (the measurement and computation of the fuel level
in a vehicle tank) based on the requirement specification
document of a car manufacturer. We continue by
summarizing the basis for our relation-based implementation
of test generation.

In order to extend it to software, the requirement
specification has to be turned into a relational representation.
In the respective document, the skeleton of this specification
is provided in a state-chart manner. Therefore, section 3 of
this paper proposes a behavior specification as a special finite
state machine, and section 4 presents the transformation into
a relational representation.

A major challenge in the application of the test generation
algorithm to software is to provide relevant and appropriate
fault models against which the software should be tested
(section 5). The final sections present results of the case
study and discuss problems and insights.

2 The Background:
Model-based Test Generation

In the most general way, testing aims at finding out
which hypothesis out of a set H is correct (if any)
by stimulating a system such that the available

observations of the system responses to the stimuli
refute all but one hypotheses (or even all of them).

This is captured by the following definition.

Definition (Discriminating Test Input)
Let TI = {ti} be the set of possible test inputs (stimuli),
OBS = {obs} the set of possible observations (system
responses), and H = {hi} a set of hypotheses.
ti ∈ TI is called a definitely discriminating test input for
H if
(i) ∀ hi ∈ H ∃ obs ∈ OBS ti ∧ hi ∧ obs O ⊥ , and
(ii) ∀ hi ∈ H ∀ obs ∈ OBS
 if ti ∧ hi ∧ obs O ⊥
 then ∀ hj ≠ hi ti ∧ hj ∧ obs P ⊥.
ti is a possibly discriminating test input if
(ii´) ∀ hi ∈ H ∃ obs ∈ OBS such that
 ti ∧ hi ∧ obs O ⊥ and ∀ hj ≠ hi ti ∧ hj ∧ obs O ⊥.

In this definition, condition (i) expresses that there exists
an observable system response for each hypothesis under the
test input. It also implies that test inputs are consistent with
all hypotheses. i.e. we are able to apply the stimulus, because
it is causally independent of the hypotheses. Condition (ii)
formulates the requirement that the resulting observation
guarantees that at most one hypothesis will not be refuted,
while (ii’) states that each hypothesis may generate an
observation that refutes all others.

While testing, for instance, for fault identification has to
discriminate between each single pair of hypotheses (if
possible), testing for confirming (or refuting) a particular
hypothesis h0 requires only discrimination between h0 and
any other hypothesis. Usually, one stimulus is not enough to
perform the discrimination task which motivates the
following definition.

Definition (Confirming Test Input Set)
{tik} = TI´ ⊂ TI is called a discriminating test input set for
H = {hi} and h0 ∈ H if

∀ hj with h0 ≠ hj ∃ tik ∈ TI´ such that
 tik is a discriminating test input for {h0, hj}.

It is called definitely confirming if all tik have this
property, and possibly confirming otherwise. It is called
minimal if it has no proper subset TI´´⊂ TI´ which is
discriminating.

Remark
Refutation of all hypotheses hj ≠ h0 implies h0 only, if we
assume that the set H is complete, i.e. ∨i hi

Such logical characterizations (see also [McIlraith-Reiter
92]) are too general to serve as a basis for the development of
an appropriate representation and algorithms for test
generation. Here, the hypotheses correspond to assumptions
about the correct or possible faulty behavior of the system to
be tested. They are usually given by equations and
imple-mented by constraints, and test inputs and
observations can be described as value assignments to system
variables.

The system behavior is assumed to be characterized by a
vector vS = (v1, v2, v3, … , vn) of system variables with
domains DOM(vS) = DOM(v1) × DOM(v2) × … × DOM(vn).
Then a hypothesis hi ∈ H is given as a relation Ri ⊆ DOM(vS).

For conformity testing, is h0 given by R0 = ROK, the model
of correct behavior. Observations are value assignments to a
subvector of the variables, vobs, and also the stimuli are
described by assigning values to a vector vcause of susceptible
(“causal” or input) variables. We make the reasonable
assumption that we always know the applied stimulus which
means the causal variables are a subvector of the observable
ones: vcause ⊆ vobs ⊆ {vi}

The basic idea underlying model-based test generation
([Struss 94]) is that the construction of test inputs is done by
computing them from the observable differences of the
relations that represent the various hypotheses. Figure 1
illustrates this. Firstly, for testing, only the observables
matter. Accordingly, Figure 1 presents only the projections,
pobs(Ri), pobs(Rj), of two relations, R1 and R2, (possibly defined
over a large set of variables) to the observable variables. The
vertical axis represents the causal variables, whereas the
horizontal axis shows the other observable variables
(representing the observable system response).

To construct a (definitely) discriminating test input, we
have to avoid stimuli that can lead to the same observable
system response for both relations, i.e. stimuli that may lead
to an observation in the intersection pobs(Ri) ∩ pobs(Rj) shaded
in Figure 1. These test inputs we find by projecting the
intersection to the causal variables:
 pcause(pobs(Ri) ∩ pobs(Rj)) .

 The complement of this is the complete set of all test
inputs that are guaranteed to produce different system
responses under the two hypotheses:

DTIij = DOM(vcause) \ pcause(pobs(Ri) ∩ pobs(Rj)) .

Lemma 1
If hi=Ri, hj=Rj, TI=DOM(vcause), and OBS=DOM(vobs),
then DTIij is the set of all definitely discriminating test
inputs for {hi, hj}.

Please, note that we assume that the projections of Ri and Rj
cover the entire domain of the causal variables which
corresponds to condition (i) in the definition of the test input
(an assumption which may be relaxed in the otherwise

Figure 1 Determining the inputs that do not, possibly and
definitely discriminate between R1 and R2

vcause

vobs\cause

Not discriminable
(NTI)

Definitely Discriminable
(DTI)

Possibly discriminable
(PTI)

R1
R2

vcausevcause

vobs\causevobs\cause

Not discriminable
(NTI)

Definitely Discriminable
(DTI)

Possibly discriminable
(PTI)

R1
R2

identical discriminability/detectability analysis presented in
[Dressler-Struss 03]).

We only mention the fact, that, when applying tests in
practice, one may have to avoid certain stimuli because they
carry the risk of damaging or destroying the system or to
create catastrophic effects as long as certain faults have not
been ruled out. In this case, the admissible test inputs are
given by some set Radm ⊆ DOM(vcause), and we obtain
DTIadm, ij = Radm \ pcause(pobs(Ri) ∩ pobs(Rj)) .

In a similar way as DTIij, we can compute the set of test
inputs that are guaranteed to create indistinguishable
observable responses under both hypotheses, i.e. they cannot
produce observations in the difference of the relations:

(pobs(Ri) \ pobs(Rj)) ∪ (pobs(Ri) \ pobs(Ri)).
Then the non-discriminating test inputs are

NTIij =
DOM(vcause)\ pcause((pobs(Rj)\ pobs(Ri)) ∪ (pobs(Ri)\ pobs(Rj)))

All other test inputs may or may not lead to discrimination.

Lemma 2
The set of all possibly discriminating test inputs for a pair
of hypotheses {hi, hj} is given by

PTIij = DOM(vcause)\ (NTIij ∪ DTIij) .

The sets DTIij for all pairs {hi, hj} provide the space for
constructing (minimal) discriminating test input sets.

Lemma 3
The (minimal) hitting sets of the set {DTI0j} are the
(minimal) definitely confirming test input sets for H, h0.

A hitting set of a set of sets {Ai} is defined by having a
non-empty intersection with each Ai. (Please, note that
Lemma 3 has only the purpose to characterize all
discriminating test input sets. Since we need only one test
input to perform the test, we are not bothered by the
complexity of computing all hitting sets.)

This way, the number of tests constructed can be less than
the number of hypotheses different from h0. If the tests have a
fixed cost associated, then the cheapest test set can be found
among the minimal sets. However, it is worth noting that the
test input sets are the minimal ones that guarantee the
discrimination of h0 from the hypotheses in H. In practice,
only a subset of the tests may have to be executed, because
some of them refute more hypotheses than guaranteed
(because they are a possibly discriminating test for some
other pair of hypotheses) and render other tests unnecessary.

The algorithm has been implemented based on software
components of OCC’M’s RAZ’R ([OCC’M 05]) which
provide a representation and operations of relations as
ordered multiple decision diagrams (OMDD).

Finally, we mention that probabilities (of hypotheses and
observations) can be used to optimize test sets ([Struss 94a],
[Vatcheva-de Jong-Mars 02]).

3 State Charts for Specification of Software
Requirements

State charts and finite state machines (FSM) are commonly
used in specifications of software requirements. Figure 2

shows a FSM extracted from a requirement specification
delivered by an automotive manufacturer. The machine
describes a process to detect refueling of a passenger car: if
the car stops for more than 8 seconds and if a remarkably
higher tank filling is detected then the software sets the
output flag RFD (ReFilling Detected) to true. Otherwise RFD
is always false.

Let us define the used type of FSM in a more formal way:
an automata ma = (E,(I,O,L),(S,A),T,s0,l0) is described by

• the set E of events e1, …, enE,
• the ordered set I of input variables i1,… ,inI,
• the ordered set O of output variables o1, …, onO,
• the ordered set L of local variables l1, …, lnL,
• the set S of control states s1, …, snS,
• the set A of state expressions a1, …, anS defining a

relation δa,i ⊂ dom(I) x dom(L) x dom(O) x dom(L) for
each state si,

• the set T of transitions T1, …, TnT with
Ti ⊂ S x P(dom(E) x dom(I) x dom(L)) x S where
P(X) denotes to the power set of X,

• the initial control state s0 and
• the vector l0 with the initial values of L.

Each machine has a special local variable l1 called stime
indicating the time elapsed since the machine has entered the
actual control state. It is special because each time the control
state is switched, the variable is reset automatically. Every
variable v in I, O or L has a finite domain dom(v).
 With the inputs (i1, …, in) and the events (e1, …, en) the
machine produces the outputs (o1, …, on) according to the
following operating sequence:

1. Set t = 0.
2. Evaluate the state expression ai of the current state

st=si to calculate the new values of the output and
local variables : (it+1, lt, ot+1, lt+1) ∈ δa,i

3. If T contains a transition Ti=(ssrc, IF, sdst) with ssrc=st
and (et+1,it+1,lt+1)∈IF then set st+1=sdst, otherwise set
st+1=st.

4. If st+1≠ st then reset stime.

Figure 2: FSM describing a refilling detection in a
personal car

5. Set t=t+1
6. Jump to Step 2.

In our example, the FSM has two input variables car
moves and ∆time, one output variable RFD, stime as a the
only local variable and the events nothing, car starts moving,
car stops and increased tank filling. The variable ∆time is set
according to the time elapsed since the previous event
occurred. Its value is always added to the stime variable,
which could be used in a precondition of a transition.

Dependent on the chosen set of input variables I and the
events E, the test generation system needs more information
in order to produce meaningful tests, because the values of
some variables might depend on the occurrence of an event.
E.g. if car movest=true then a event car starts moving can not
occur next. In our example, the following rules are necessary:
 car movest = false ∧ car movest+1 = true ⇔
 et = car starts moving

 car movest=true ∧ car movest+1=false ⇔ et=car stops
In the next section, we describe how the FSM is

transformed into a relational representation.

4. Transformation of a FSM into a
Compositional, Relational Representation
The conversion of a FSM of the described type produces a
compositional model, i.e. a model that preserves the structure
and the elements of the FSM. As a consequence, a
modification of one part of the FSM results in the
modification of only one part of the compositional model (As
it will turn out this is not fully accomplished for fundamental
reasons). The compositional model also provides the
possibility of relating “defects” to the various elements (and
also to record and trace their effects e.g. in diagnosis).

The basic step is the transformation of the entire FSM into
a component C1Step and its internal structure (Figure 3).
C1Step takes the state st, values of local variables lt, the input
vector it+1, and the event et+1 and generates the subsequent
state st+1, the new values of local variables lt+1, and the output
vector ot+1, reproducing the calculations of the FSM in one
step (an iteration in the listed operation sequence). C1Step
consists of the two components CState and CTrans. The
former encodes the state expressions δa,i, while CTrans
represents the transitions T . i

CState constrains st, lt, lt+1, ot+1 and it+1 independently from
the next event et+1. It contains nS atomic components Cai, one
for each state expression ai, which are placed in parallel
(Figure 4). The expressions are conditioned by their
respective state and, hence, exactly one component Cai
defines the proper values of the variables. Hence, a change in
one ai results in the modification of only one component and
a maximum of locality is achieved.

Cai determines lt+1 and ot+1 depending on st, lt and it+1
according to ai. The relational model RCai of such an atomic
component is:

CTrans correlates all the variables except the output ot+1
and consists of nT parallel atomic components CTi, one for
each transition, and a component CTDefault (Figure 5). Exactly

one component CTi determines st+1 depending on st, lt+1, it+1
and et+1 according to Ti. The relational model RCTi of these

atomic components are:

() ()() ()
()

1 1 1 1 1 1

1 1

, , , , | (, , ,)
j

j

t t t t t t t t t t
j a

Ca
t t t

j

s i l l o s s i l o l
R

s s l L o O

δ+ + + + + +

+ +

⎧ ⎫= ∧ ∈ ∨⎪ ⎪= ⎨ ⎬
≠ ∧ ∈ ∧ ∈⎪ ⎪⎩ ⎭

()()
() ()()
() ()()

1 1 1

1 1 1

1 1 1

: , , , ,

, , (, ,)

, , (, ,)

|{

}

i

i

t t t t t
CT

t t t t t
T T i

t t t t t t t t
i

R s e i l s

T s IF s e i l IF

T s IF s s s e i l IF s S

+ + +

+ + +
∈

1+ + + +

= ∧ ∈ ∨

= ∧ ≠ ∨ ∉ ⇒ ∈

∃
% % %

In all cases where no transition is executed, the atomic
component CTDefault defines the values according to the
automata definition: the state does not change, st+1 = st.
Therefore its relation is

()()
()1

1 1 1

1 1
(, ,)

, , , , |

(, ,)Default

t t
i

t t t t t

CT t t t t t
T s IF s

s e i l s
R

s s e i l IF+

+ + +

+ +
=

⎧ ⎫
⎪ ⎪= ⎨ ⎬

∀ ≠ ∨ ∉⎪ ⎪⎩ ⎭% %
%

CTrans

CState

et+1it+1

lt

st

ot+1

lt+1

st+1st+1

lt+1

Figure 3: C1Step and its internal structure.

Figure 4: CState and its internal structure.

Figure 5: CTrans and its internal structure.

Now one iteration of the operating sequence can be

simulated. To simulate n iterations, C1Step is copied n times
and placed in serial. But this shows also a limitation: the
model can simulate only a fixed number of steps, and the
more C1Steps components are interconnected the bigger the
model (the relation of the entire model) grows.

The number of steps needed for test generation depends on
the respective FSM and the failure. In order to discriminate
the ok-model from the failure model, n has to be at least as
long as the shortest path in which effects of the fault becomes
observable. One solution for this problem could be to start
with a small amount of steps and increase it until the system
produces some tests.

A violations of locality becomes evident when the (set of)
transitions are changed, e.g. by deleting, adding, or
modifying one. In such cases, not only the respective CTi
component has to be removed, added, or changed, but also
the default behavior in CTDefault has to be updated.

5 Fault Models
As described in section 2, our approach to testing is based on
trying to confirm the correct behavior by refuting the models
of possible faulty behaviors. When testing systems that are
composed of physical components only, these models are
obtained in a natural way from the fault models of elementary
components, which usually have a small set of (qualitatively
different) foreseeable misbehaviors due to the underlying
physics. Faults due to additional interactions among
components are either neglected or have to be anticipated and
manifested in the model. In summary, for physical systems,
the specific realization of the system determines the possible
kinds of misbehavior, and testing compares them to a
situation where all components work properly.

In software testing, this does not apply. First, the space of
possible faults is not restricted by physical laws, but only by
the creativity of the software developer when making
mistakes. This space is infinite, and the occurrence of
structural faults is the rule rather than an exception. Second,
the assumption that correct functioning of all (software)
components assures the achievement of the intended overall
behavior does not hold. This marks an important difference
between testing physical artifacts and software. For the
former, we can usually assume it was designed correctly
(which is why correct components together will perform
correctly), but for the software we cannot. It is just the
opposite: testing aims at revealing design faults.

In our application, the situation is complicated by the fact
that it starts from the functional requirements rather than a
detailed software design or even the code which might
suggest certain types of bugs to check for (e.g. no termination
of a while loop). On the positive side, this may lead to a
smaller, qualitatively characterized set of possible
misbehaviors.

In our example about the detection of fuel refilling, a
failure one might think of is that the software does not poll
the car’s movement during driving and therefore does not

detect a stop. This means the machine stays in its current
control state instead of performing T3. The Transition T3
could be seen as deleted. The construction of such a failure
model could be achieved by applying the following operator
on the ok-model:

remove-if-condition: (ma, Ti) → (ma’)
where ma’ = ma[IFi → ∅] and Ti=(st,IFi,st+1). Operation
ma[A → B] results in a FSM ma’

 which is equal to ma except
that element A is substituted with B.

Another faulty behavior is that after waiting 8sec in
standstill the software behaves the same way both detecting
an increased tank fill and detecting that the car starts moving.
Looking at the FSM, this means executing T6 instead of T7.
The proper failure model can be constructed by the operator

move-if-condition-to: (ma,Ti, Tj) → (ma’)
where ma’ = ma[IFi → IFi∪ IFj, IFj → ∅] and Ti=(st,IFi,st+1).

With carefully chosen sets of failure models, one can also
generate tests that achieve classical coverage criteria
[Beizer95]. To get a state coverage, for example, a set of
failure models Mfail could be constructed as following. For
each state si there exists one failure model mfail,i in Mfail which
differs from the ok-model in the output of state expression ai
only. The outputs of these two models are complementary.
For the case that mok is a deterministic automata, the
equivalence is proven in [Esser05].

6 Results and Discussion
In this section the discrimination of two failure models from
the ok model is discussed. These failures are:

• mdelT3 = remove-if-condition(mok,T3)
• mdelT5 = remove-if-condition(mok,T5)

A relational model that simulates 7 steps of the FSM is used
here.

Discrimination between mok and mdelT3

Only two types of tests are generated to discriminate these
two models. Figure 6 lists them, where ‘*’ stands for any
value in the domain of the respective variable. The input
sequence of the first test could be formulated more naturally
as following:

1. starting from the initial state one waits 4s long,
2. then the car starts moving and
3. directly after this, it stops again and
4. one waits again 4s.
5. After waiting a third time 4s,
6. a significant increase of the tank filling is detected.

Discrimination between mok and mdelT5

To discriminate these two models, 36 different types of tests
will be generated. The two tests of the previous
discriminations are also among them. Some of them are
shown in Figure 7. In test 2, the second and the third event
occurring are “increased tank filling”. These events are
unnecessary. Without these two steps the test input still
discriminates the fault from the ok model. The reason that the
system generates these is the fixed number of steps of the
relational model. So some steps have to be filled with events

h
s

D
T
w
b
I
a
d
b
o

D
W
a
r
p

m
a
c
r
t
b
s

most important guideline: appropriateness for current
practice.

Our project is not an academic exercise, but aims at tools
that can be easily used in the actual work process. Current
requirement specifications at the development stage that
matters in our context comprise mainly natural language text
together with a few formal or semi-formal elements, such as
state charts (provided they are written at all!). Assuming the
existence of formal, executable specifications is unrealistic.
Any formal representation of the requirements as we need
them as an input to our tools needs to take into account
whether they can be produced in the current process, by the
staff given its education and background, and the limited
efforts that can be spent in a real project where meeting
deadlines and reducing development time has top priority.
Whenever the use of new tools and additional work is
required, this needs a rigorous justification by a significant
pay-off (in our case in the time spent on testing and the
quality of its results).

Acknowledgements
Thanks to Torsten Strobel who implemented the algorithm,

Oskar Dressler for discussions and support of this work, and
the Model-based Systems and Qualitative Modeling Group at
the Technical University of Munich. We also thank Audi AG,
Ingolstadt, and, in particular, Reinhard Schieber for support
of this work.

References

Figure7: tests discriminating m from m
Figure6: tests discriminating mok from mdelT3
aving no effects but serving as placeholder. On this account
o many different tests are generated.

iscrimination of both pairs
ests discriminating between both pairs (mok from mdelT3 as
ell from mdelT5) are the two from the first discrimination,
ecause these are also in the generated set of the second one.
n our example this is not surprising. To distinguish between
n ok automata and a fault automata where a transition is
eleted, one of these both has always to reach state S6,
ecause only there the output is different to the one of the
thers.

iscussion
e consider the results of this experiment as encouraging

nd will continue this work in a project with Audi AG. It has
aised a number of issues that need to be addressed in this
roject.

A basic one concerns the question whether the current
odeling formalism, a specific type of finite state machine, is

ppropriate. This has several aspects: First, it has to be
hecked whether it is expressive enough to capture the
equirements on embedded software. Second, the impact of
he representation on the complexity of the algorithm has to
e analyzed (Handling absolute time is an important issue, as
tated below). These aspects have to be confronted with the

ok delT5 [Dressler-Struss 03] Dressler, O., Struss, P.: A Toolbox
Integrating Model-based Diagnosability Analysis and
Automated Generation of Diagnostics.
In: Proceedings of the 14th International Workshop on
Principles of Diagnosis (DX03), pages 99-104,
Washington, D.C., USA, June 2003

[Esser 05] Esser, M: Modellbasierte Generierung von Tests
für eingebettete Systeme am Beispiel der Tankanzeige in
einem Kraftwagen, Technical University of Munich, 2005

[Beizer95] Beizer, B.: Black-Box Testing, John Wiley and
Sons, New York, NY, 1995

[McIlraith-Reiter 92] McIlraith, S., Reiter, R.: On Tests for
Hypothetical Reasoning. In: W. Hamscher, J. de Kleer
und L. Console (Hg.). Readings in Model-based
Diagnosis. Morgan Kaufmann, San Mateo, 1992

[OCC’M 05] www.occm.de
 [Struss 94] Struss, P.: Testing Physical Systems. In:

Proceedings of AAAI-94, Seattle, USA, 1994.
[Struss 94a] Struss, P.: Testing for Discrimination of

Diagnoses. In: Working Papers of the 5th International
Workshop on Principles of Diagnosis (DX-94), New
Paltz, USA, 1994.

[Vatcheva-de Jong-Mars 02] Vatcheva, I., de Jong, H., Mars,
N.: Selection of Perturbation Experiments for Model
Discrimination. Proceeddings of ECAI-02, 2002

