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Abstract 
Testing embedded software systems on the control 
units of vehicles is a safety-relevant task, and 
developing the test suites for performing the tests on 
test benches is time-consuming. We present the 
foundations and results of a case study to automate 
the generation of tests for control software of 
vehicle control units based on a specification of 
requirements in terms of finite state machines. This 
case study builds upon our previous work on 
generation of tests for physical systems based on 
relational behavior models. In order to apply the 
respective algorithms, the finite state machine 
representation is transformed into a relational model. 
We present the transformation, the application of 
the test generation algorithm to a real example, and 
discuss the results and some specific challenges 
regarding software testing. 

1 Introduction 
Over the last decade or so, cars have become a kind of 

mobile software platform. There are tens of processors 
(Electronic Control Units, ECU) on board of a vehicle; they 
are communicating with each other via several bus systems, 
and software has a major influence on the performance and 
safety of a vehicle. The software embedded in the mechanical, 
electrical, pneumatic, and hydraulic car subsystems becomes 
increasingly complex, and it comes in many variants, 
reflecting the context of different types of vehicles, the 
manufacturer-specific physical realization, versions over 
time etc. Testing such embedded software becomes 
increasingly challenging and has been moving away from 
test drives under various conditions to automated tests 
performed on test benches which can partly or totally 
simulated the car as a physical system. 

 But for the reasons stated above, namely complexity of 
the software and its variation, generating the test suites 
becomes demanding and time consuming and demands for 
computer support. Automating the generation of such tests 
based on a specification of the desired behavior of the 
software together with the physical system promises benefits 
regarding both the required efforts and the completeness of 
the result. 

In [Struss 94, 94a], we presented the theoretical and 
technical foundations for automated test generation for 
physical systems based on models of their (nominal and 
faulty) behavior. Such behaviors are represented as (finite) 
relations over system variables which characterize the 
possible states under different modes of behavior. On this 
basis, tests can be computed as sets of stimuli that trigger 
disjoint projections of the behavior relations to the space of 
observables. 
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An extension of this approach to cover also software 
would be highly beneficial, because it would provide a 
coherent solution to testing both physical systems and their 
embedded software. More concretely, the software test could 
start from a specification of the intended behavior of the 
physical system, and also the tests could reflect the particular 
nature of the embedded software, namely using stimuli and 
observations of the physical system rather than directly of the 
software system.  

The case study described in this paper concerns a real-life 
example (the measurement and computation of the fuel level 
in a vehicle tank) based on the requirement specification 
document of a car manufacturer. We continue by 
summarizing the basis for our relation-based implementation 
of test generation.  

In order to extend it to software, the requirement 
specification has to be turned into a relational representation. 
In the respective document, the skeleton of this specification 
is provided in a state-chart manner. Therefore, section 3 of 
this paper proposes a behavior specification as a special finite 
state machine, and section 4 presents the transformation into 
a relational representation.  

A major challenge in the application of the test generation 
algorithm to software is to provide relevant and appropriate 
fault models against which the software should be tested 
(section 5). The final sections present results of the case 
study and discuss problems and insights. 

2 The Background:  
Model-based Test Generation 

In the most general way, testing aims at finding out 
which hypothesis out of a set H is correct (if any) 
by stimulating a system such that the available 



observations of the system responses to the stimuli 
refute all but one hypotheses (or even all of them).  

This is captured by the following definition. 

Definition (Discriminating Test Input) 
Let TI = {ti} be the set of possible test inputs (stimuli), 
OBS = {obs} the set of possible observations (system 
responses), and H = {hi} a set of hypotheses. 
ti ∈ TI is called a definitely discriminating test input for 
H if 
(i) ∀ hi ∈ H  ∃ obs ∈ OBS    ti ∧ hi ∧ obs O ⊥ ,  and 
(ii) ∀ hi ∈ H  ∀ obs ∈ OBS  
     if    ti ∧ hi ∧ obs O ⊥ 
     then ∀ hj ≠ hi ti ∧ hj ∧ obs P ⊥. 
ti is a possibly discriminating test input if  
(ii´) ∀ hi ∈ H  ∃ obs ∈ OBS such that 
  ti ∧ hi ∧ obs O ⊥  and   ∀ hj ≠ hi   ti ∧ hj ∧ obs O ⊥. 

In this definition, condition (i) expresses that there exists 
an observable system response for each hypothesis under the 
test input. It also implies that test inputs are consistent with 
all hypotheses. i.e. we are able to apply the stimulus, because 
it is causally independent of the hypotheses. Condition (ii) 
formulates the requirement that the resulting observation 
guarantees that at most one hypothesis will not be refuted, 
while (ii’) states that each hypothesis may generate an 
observation that refutes all others. 

While testing, for instance, for fault identification has to 
discriminate between each single pair of hypotheses (if 
possible), testing for confirming (or refuting) a particular 
hypothesis h0 requires only discrimination between h0 and 
any other hypothesis. Usually, one stimulus is not enough to 
perform the discrimination task which motivates the 
following definition. 

Definition (Confirming Test Input Set) 
{tik} =  TI´ ⊂ TI is called a discriminating test input set for 
H = {hi} and h0 ∈ H if  

∀ hj with h0 ≠ hj     ∃ tik  ∈ TI´ such that 
  tik is a discriminating test input for {h0, hj}. 

It is called definitely confirming if all tik have this 
property, and possibly confirming otherwise. It is called 
minimal if it has no proper subset TI´´⊂ TI´ which is 
discriminating. 

Remark  
Refutation of all hypotheses hj ≠ h0  implies h0  only, if we 
assume that the set H is complete, i.e. ∨i  hi 

Such logical characterizations (see also [McIlraith-Reiter 
92]) are too general to serve as a basis for the development of 
an appropriate representation and algorithms for test 
generation. Here, the hypotheses correspond to assumptions 
about the correct or possible faulty behavior of the system to 
be tested. They are usually given by equations and 
imple-mented by constraints, and test inputs and 
observations can be described as value assignments to system 
variables. 

The system behavior is assumed to be characterized by a 
vector vS = (v1, v2, v3, … , vn) of system variables with 
domains DOM(vS) =  DOM(v1) × DOM(v2) × … × DOM(vn). 
Then a hypothesis hi ∈ H is given as a relation Ri ⊆ DOM(vS). 

For conformity testing, is h0 given by R0 = ROK, the model 
of correct behavior. Observations are value assignments to a 
subvector of the variables, vobs, and also the stimuli are 
described by assigning values to a vector vcause of susceptible 
(“causal” or input) variables. We make the reasonable 
assumption that we always know the applied stimulus which 
means the causal variables are a subvector of the observable 
ones:  vcause ⊆ vobs ⊆ {vi} 

The basic idea underlying model-based test generation 
([Struss 94]) is that the construction of test inputs is done by 
computing them from the observable differences of the 
relations that represent the various hypotheses. Figure 1 
illustrates this. Firstly, for testing, only the observables 
matter. Accordingly, Figure 1 presents only the projections, 
pobs(Ri), pobs(Rj), of two relations, R1 and R2, (possibly defined 
over a large set of variables) to the observable variables. The 
vertical axis represents the causal variables, whereas the 
horizontal axis shows the other observable variables 
(representing the observable system response). 

To construct a (definitely) discriminating test input, we 
have to avoid stimuli that can lead to the same observable 
system response for both relations, i.e. stimuli that may lead 
to an observation in the intersection pobs(Ri) ∩ pobs(Rj) shaded 
in Figure 1. These test inputs we find by projecting the 
intersection to the causal variables: 
 pcause(pobs(Ri) ∩ pobs(Rj) ) . 

 The complement of this is the complete set of all test 
inputs that are guaranteed to produce different system 
responses under the two hypotheses: 

DTIij = DOM(vcause) \ pcause(pobs(Ri) ∩ pobs(Rj)) .  

Lemma 1 
If hi=Ri, hj=Rj, TI=DOM(vcause), and OBS=DOM(vobs), 
then DTIij is the set of all definitely discriminating test 
inputs for {hi, hj}. 

Please, note that we assume that the projections of Ri and Rj 
cover the entire domain of the causal variables which 
corresponds to condition (i) in the definition of the test input 
(an assumption which may be relaxed in the otherwise 

Figure 1 Determining the inputs that do not, possibly and 
definitely discriminate between R1 and R2 
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identical discriminability/detectability analysis presented in 
[Dressler-Struss 03]). 

We only mention the fact, that, when applying tests in 
practice, one may have to avoid certain stimuli because they 
carry the risk of damaging or destroying the system or to 
create catastrophic effects as long as certain faults have not 
been ruled out. In this case, the admissible test inputs are 
given by some set Radm ⊆ DOM(vcause), and we obtain  
DTIadm, ij = Radm \ pcause(pobs(Ri) ∩ pobs(Rj)) . 

In a similar way as DTIij, we can compute the set of test 
inputs that are guaranteed to create indistinguishable 
observable responses under both hypotheses, i.e. they cannot 
produce observations in the difference of the relations: 

(pobs(Ri) \  pobs(Rj)) ∪ (pobs(Ri) \  pobs(Ri)). 
Then the non-discriminating test inputs are 

NTIij =  
DOM(vcause)\ pcause((pobs(Rj)\ pobs(Ri)) ∪ (pobs(Ri)\ pobs(Rj))) 

All other test inputs may or may not lead to discrimination. 

Lemma 2 
The set of all possibly discriminating test inputs for a pair 
of hypotheses {hi, hj} is given by 

PTIij = DOM(vcause)\ (NTIij  ∪ DTIij ) . 

The sets DTIij for all pairs {hi, hj} provide the space for 
constructing (minimal) discriminating test input sets. 

Lemma 3 
The (minimal) hitting sets of the set {DTI0j} are the 
(minimal) definitely confirming test input sets for H, h0. 

A hitting set of a set of sets {Ai} is defined by having a 
non-empty intersection with each Ai. (Please, note that 
Lemma 3 has only the purpose to characterize all 
discriminating test input sets. Since we need only one test 
input to perform the test, we are not bothered by the 
complexity of computing all hitting sets.)  

This way, the number of tests constructed can be less than 
the number of hypotheses different from h0. If the tests have a 
fixed cost associated, then the cheapest test set can be found 
among the minimal sets. However, it is worth noting that the 
test input sets are the minimal ones that guarantee the 
discrimination of h0 from the hypotheses in H. In practice, 
only a subset of the tests may have to be executed, because 
some of them refute more hypotheses than guaranteed 
(because they are a possibly discriminating test for some 
other pair of hypotheses) and render other tests unnecessary. 

The algorithm has been implemented based on software 
components of OCC’M’s RAZ’R ([OCC’M 05]) which 
provide a representation and operations of relations as 
ordered multiple decision diagrams (OMDD).  

Finally, we mention that probabilities (of hypotheses and 
observations) can be used to optimize test sets ([Struss 94a], 
[Vatcheva-de Jong-Mars 02]).  

3 State Charts for Specification of Software 
Requirements 

State charts and finite state machines (FSM) are commonly 
used in specifications of software requirements. Figure 2 

shows a FSM extracted from a requirement specification 
delivered by an automotive manufacturer. The machine 
describes a process to detect refueling of a passenger car: if 
the car stops for more than 8 seconds and if a remarkably 
higher tank filling is detected then the software sets the 
output flag RFD (ReFilling Detected) to true. Otherwise RFD 
is always false. 

Let us define the used type of FSM in a more formal way: 
an automata ma = (E,(I,O,L),(S,A),T,s0,l0) is described by 

• the set E of events e1, …, enE, 
• the ordered set I of input variables i1,… ,inI, 
• the ordered set O of output variables o1, …, onO, 
• the ordered set L of local variables l1, …, lnL, 
• the set S of control states s1, …, snS, 
• the set A of state expressions a1, …, anS defining a 

relation δa,i ⊂ dom(I) x dom(L) x dom(O) x dom(L) for 
each state si, 

• the set T of transitions T1, …, TnT with  
Ti ⊂ S x P(dom(E) x dom(I) x dom(L)) x S where      
P(X) denotes to the power set of X, 

• the initial control state s0 and 
• the vector l0 with the initial values of L. 

Each machine has a special local variable l1 called stime 
indicating the time elapsed since the machine has entered the 
actual control state. It is special because each time the control 
state is switched, the variable is reset automatically. Every 
variable v in I, O or L has a finite domain dom(v). 
 With the inputs (i1, …, in) and the events (e1, …, en) the 
machine produces the outputs (o1, …, on) according to the 
following operating sequence: 

1. Set t = 0. 
2. Evaluate the state expression ai of the current state 

st=si to calculate the new values of the output and 
local variables : (it+1, lt, ot+1, lt+1) ∈ δa,i 

3. If T contains a transition Ti=(ssrc, IF, sdst) with ssrc=st 
and (et+1,it+1,lt+1)∈IF then set st+1=sdst, otherwise set 
st+1=st. 

4. If st+1≠ st then reset stime. 

Figure 2: FSM describing a refilling detection in a 
personal car 



5. Set t=t+1 
6. Jump to Step 2. 

In our example, the FSM has two input variables car 
moves and ∆time, one output variable RFD, stime as a the 
only local variable and the events nothing, car starts moving, 
car stops and increased tank filling. The variable ∆time is set 
according to the time elapsed since the previous event 
occurred. Its value is always added to the stime variable, 
which could be used in a precondition of a transition. 

Dependent on the chosen set of input variables I and the 
events E, the test generation system needs more information 
in order to produce meaningful tests, because the values of 
some variables might depend on the occurrence of an event. 
E.g. if car movest=true then a event car starts moving can not 
occur next. In our example, the following rules are necessary: 
  car movest = false  ∧  car movest+1 = true ⇔  
              et = car starts moving 

  car movest=true ∧ car movest+1=false ⇔ et=car stops 
In the next section, we describe how the FSM is 

transformed into a relational representation. 

4. Transformation of a FSM into a 
Compositional, Relational Representation  
The conversion of a FSM of the described type produces a 
compositional model, i.e. a model that preserves the structure 
and the elements of the FSM. As a consequence, a 
modification of one part of the FSM results in the 
modification of only one part of the compositional model (As 
it will turn out this is not fully accomplished for fundamental 
reasons). The compositional model also provides the 
possibility of relating “defects” to the various elements (and 
also to record and trace their effects e.g. in diagnosis). 

The basic step is the transformation of the entire FSM into 
a component C1Step and its internal structure (Figure 3). 
C1Step takes the state st, values of local variables lt, the input 
vector it+1, and the event et+1 and generates the subsequent 
state st+1, the new values of local variables lt+1, and the output 
vector ot+1, reproducing the calculations of the FSM in one 
step (an iteration in the listed operation sequence). C1Step 
consists of the two components CState and CTrans. The 
former encodes the state expressions δa,i, while CTrans 
represents the transitions T .  i

CState constrains st, lt, lt+1, ot+1 and it+1 independently from 
the next event et+1. It contains nS atomic components Cai, one 
for each state expression ai, which are placed in parallel 
(Figure 4). The expressions are conditioned by their 
respective state and, hence, exactly one component Cai 
defines the proper values of the variables. Hence, a change in 
one ai results in the modification of only one component and 
a maximum of locality is achieved. 

Cai determines lt+1 and ot+1 depending on st, lt and it+1 
according to ai. The relational model RCai of such an atomic 
component is: 

CTrans correlates all the variables except the output ot+1 
and consists of nT parallel atomic components CTi, one for 
each transition, and a component CTDefault (Figure 5). Exactly 

one component CTi determines st+1 depending on st, lt+1, it+1 
and et+1 according to Ti. The relational model RCTi of these 

atomic components are: 
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In all cases where no transition is executed, the  atomic 
component CTDefault defines the values according to the 
automata definition: the state does not change, st+1 = st. 
Therefore its relation is 
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Figure 3: C1Step and its internal structure. 

 

  
Figure 4: CState and its internal structure. 

 
Figure 5: CTrans and its internal structure. 



 
 
Now one iteration of the operating sequence can be 

simulated. To simulate n iterations, C1Step is copied n times 
and placed in serial. But this shows also a limitation: the 
model can simulate only a fixed number of steps, and the 
more C1Steps components are interconnected the bigger the 
model (the relation of the entire model) grows. 

The number of steps needed for test generation depends on 
the respective FSM and the failure. In order to discriminate 
the ok-model from the failure model, n has to be at least as 
long as the shortest path in which effects of the fault becomes 
observable. One solution for this problem could be to start 
with a small amount of steps and increase it until the system 
produces some tests. 

A violations of locality becomes evident when the (set of)  
transitions are changed, e.g. by deleting, adding, or 
modifying one. In such cases, not only the respective CTi 
component has to be removed, added, or changed, but also 
the default behavior in CTDefault has to be updated.  

5 Fault Models 
As described in section 2, our approach to testing is based on 
trying to confirm the correct behavior by refuting the models 
of possible faulty behaviors. When testing systems that are 
composed of physical components only, these models are 
obtained in a natural way from the fault models of elementary 
components, which usually have a small set of (qualitatively 
different) foreseeable misbehaviors due to the underlying 
physics. Faults due to additional interactions among 
components are either neglected or have to be anticipated and 
manifested in the model. In summary, for physical systems, 
the specific realization of the system determines the possible 
kinds of misbehavior, and testing compares them to a 
situation where all components work properly. 

In software testing, this does not apply. First, the space of 
possible faults is not restricted by physical laws, but only by 
the creativity of the software developer when making 
mistakes. This space is infinite, and the occurrence of 
structural faults is the rule rather than an exception. Second, 
the assumption that correct functioning of all (software) 
components assures the achievement of the intended overall 
behavior does not hold. This marks an important difference 
between testing physical artifacts and software. For the 
former, we can usually assume it was designed correctly 
(which is why correct components together will perform 
correctly), but for the software we cannot. It is just the 
opposite: testing aims at revealing design faults. 

In our application, the situation is complicated by the fact 
that it starts from the functional requirements rather than a 
detailed software design or even the code which might 
suggest certain types of bugs to check for (e.g. no termination 
of a while loop). On the positive side, this may lead to a 
smaller, qualitatively characterized set of possible 
misbehaviors. 

In our example about the detection of fuel refilling, a 
failure one might think of is that the software does not poll 
the car’s movement during driving and therefore does not 

detect a stop. This means the machine stays in its current 
control state instead of performing T3. The Transition T3 
could be seen as deleted. The construction of such a failure 
model could be achieved by applying the following operator 
on the ok-model: 

remove-if-condition: (ma, Ti) → (ma’) 
where ma’ = ma[IFi → ∅] and Ti=(st,IFi,st+1). Operation 
ma[A → B] results in a FSM ma’

 which is equal to ma except 
that element A is substituted with B. 

Another faulty behavior is that after waiting 8sec in 
standstill the software behaves the same way both detecting 
an increased tank fill and detecting that the car starts moving. 
Looking at the FSM, this means executing T6 instead of T7. 
The proper failure model can be constructed by the operator 

move-if-condition-to: (ma,Ti, Tj) → (ma’) 
where ma’ = ma[IFi → IFi∪ IFj, IFj → ∅] and Ti=(st,IFi,st+1).  

With carefully chosen sets of failure models, one can also 
generate tests that achieve classical coverage criteria 
[Beizer95]. To get a state coverage, for example, a set of 
failure models Mfail could be constructed as following. For 
each state si there exists one failure model mfail,i in Mfail which 
differs from the ok-model in the output of state expression ai 
only. The outputs of these two models are complementary. 
For the case that mok is a deterministic automata, the 
equivalence is proven in [Esser05]. 

6 Results and Discussion 
In this section the discrimination of two failure models from 
the ok model is discussed. These failures are: 

• mdelT3 = remove-if-condition(mok,T3) 
• mdelT5 = remove-if-condition(mok,T5) 

A relational model that simulates 7 steps of the FSM is used 
here. 

Discrimination between mok and mdelT3 

Only two types of tests are generated to discriminate these 
two models. Figure 6 lists them, where ‘*’ stands for any 
value in the domain of the respective variable. The input 
sequence of the first test could be formulated more naturally 
as following: 

1. starting from the initial state one waits 4s long,  
2. then the car starts moving and 
3. directly after this, it stops again and 
4. one waits again 4s. 
5. After waiting a third time 4s, 
6. a significant increase of the tank filling is detected. 

Discrimination between mok and mdelT5 

To discriminate these two models, 36 different types of tests 
will be generated. The two tests of the previous 
discriminations are also among them. Some of them are 
shown in Figure 7. In test 2, the second and the third event 
occurring are “increased tank filling”. These events are 
unnecessary. Without these two steps the test input still 
discriminates the fault from the ok model. The reason that the 
system generates these is the fixed number of steps of the 
relational model. So some steps have to be filled with events 
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most important guideline: appropriateness for current 
practice.  

Our project is not an academic exercise, but aims at tools 
that can be easily used in the actual work process. Current 
requirement specifications at the development stage that 
matters in our context comprise mainly natural language text 
together with a few formal or semi-formal elements, such as 
state charts (provided they are written at all!). Assuming the 
existence of formal, executable specifications is unrealistic. 
Any formal representation of the requirements as we need 
them as an input to our tools needs to take into account 
whether they can be produced in the current process, by the 
staff given its education and background, and the limited 
efforts that can be spent in a real project where meeting 
deadlines and reducing development time has top priority. 
Whenever the use of new tools and additional work is 
required, this needs a rigorous justification by a significant 
pay-off (in our case in the time spent on testing and the 
quality of its results).  
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