Automatic Detection of Critical Points in Bottling Plants with a Model-based Diagnosis Algorithm

Stefan Flad*, Peter Struss and Tobias Voigt

ABSTRACT

The efficiency of bottling plants typically ranges between 40 to 70%. Automatic conditioning monitoring helps to find critical points in a plant and supports the operator in optimizing the plant. But bottling plants are complex lines of several linked machines and currently critical points can only be identified manually. This paper presents a model-based efficiency analysis tool. It automatically localizes critical points that decrease the efficiency of the whole plant and the tool is adaptable to different plants solely through parameterization. The algorithm compares the behaviour of a plant with an OK-model of the plant. If there are inconsistencies, the commercial tool RAZ’R finds a failure model that is consistent with the observed plant behaviour, thus localizing the component that causes downtime of the filler. The algorithm succeeds in identifying the cause of the downtime in 90% of the cases. A demonstrator application, which runs on different plants, has been implemented and requires only simple adaptation steps. The algorithm only needs information about the configuration of the plant and the production data, which normally exists in automated plants. In the future, it is expected that the project partners will integrate the algorithm with their PDA-systems, such that the model-based analysis will help to increase the efficiency of bottling plants.

Key words: bottling plants, efficiency analysis, model-based diagnosis.

INTRODUCTION

Bottling plants are complex production lines with several linked machines. There are different machines for specific packaging tasks, such as primary packaging of beverages (e.g., glass bottles, PET-bottles), secondary packaging (e.g., crates, six-packs, etc.) and tertiary packaging (e.g., pallets). Today, the output rate of bottling plants is up to 90,000 bottles per hour. Figure 1 illustrates the complexity of these lines.

To prevent oxygen intake or microbiological contamination of the beverage, the filling process should not be interrupted. Therefore, operation of consecutive machines needs to be decoupled. Otherwise, each individual failure would inevitably cause downtime of the entire plant. In particular, this would stop the filling process and decrease the efficiency of the entire production, which is typically between 40 to 70%. Reasons for filler idling could be as follows.

- Failure of the bottle filler.
- Lack of input from the downstream process (e.g., downtime of bottle washer).
- Tailback propagation via the upstream process (e.g., downtime of the labelling machine).

Operators of bottling plants collect production data from the machines for monitoring purposes. A standard interface for data acquisition is the “Weihenstephan Standards for Production Data Acquisition in Bottling Plants” (Weihenstephan Standard). With these data, it is possible to analyse, visualise or determine performance indicators. Typical performance indicator systems are the DIN 8782 and the advanced Overall Equipment Effectiveness (OEE) concept from Nakajima, presented as the Weihenstephan Standard (Fig. 2).

For optimization of the plant, the operator has to enhance the performance indicators, such as availability or the performance efficiency. This requires knowledge about the reasons for the filler downtimes (i.e., those components of the plant that frequently cause filler downtime).

![Fig. 1. Structure of a PET returnable bottle plant.](image-url)
Currently, this is subject to a manual analysis. In order to avoid relying on statistically insignificant results from individual snapshots, operators of plants need automatic tools to support this analysis.

Goals

A research project – called LineMod – was started to find automatic solutions for plant optimisation. The project was funded under FVNr. 233 ZGB by the Federal Ministry of Economics and Technology (BMWi) through the working group of the industrial research association “Otto von Guericke” e. V.

The main goal of the project was to develop algorithms and a system for automating the identification of filler downtime causes. Based on the results, a plant operator should be able to optimize the plant efficiency and enhance availability and performance efficiency. A second goal was to develop a flexible diagnosis algorithm. It had to be adaptable to different plants only with fitting parameters and describing the structure of the plant. Therefore, it was decided to use a model-based diagnosis algorithm.

METHODS

Model-based diagnosis

A library of component models was generated that allows one to configure models of different plants. For typical bottling plants, four basic component models are needed. These are as follows.

• Material Transport (MT) for conveyors and machines.
• Separate Element (SE) for crate unpacker and depalletizer.
• Combine Element (CE) for crate packer and palletizer.
• Transportation Connector (TC), a virtual component to connect the elements.

In the following sections, the modelling assumptions and the main concept of the components, using MT as an example, are described. The other components were built in a similar way and are described in the report by Struss et al.12

Modelling assumptions

The most important assumptions underlying the material transportation models presented here, which are fulfilled in our project domain (under normal conditions), but should also apply to a much broader class of problems, are listed as follows.

• The transported objects are rigid bodies with fixed spatial extensions and are not significantly deformed through transportation.
• They are transported with a fixed orientation (such as crates), or the orientation does not affect transportation times significantly (e.g., due to a symmetric cross-section, as for bottles).
• There is no interaction among the objects or between objects and the components that have a significant impact on the transportation process (such as bouncing).
• Objects can move only in the direction of the motion of the transportation means (or not at all).

A model of a material transportation element with buffer

In order to present the essentials of the modelling approach, some sort of archetype of model, which can be specialized or extended to accommodate other kinds of machines, was considered. This is a machine that includes the following.

• Has one input and one output with \(v_{in}, v_{out} \) being the respective speeds of the means for transportation (e.g., belts).
• Possibly transforms or modifies one kind of object (as, for instance, cleaning of bottles), but does not amalgamate several objects to form a new one.
• Has a buffer with a (constant) capacity C.

The process of buffering the objects can be fairly random, where bottles may gather in bulks. However, it is assumed that (under normal behaviour) no object is prevented from approaching the output unless it is blocked by other objects ahead, waiting for output. For instance, within the bottle conveyor, its shape and several parallel belts with different speeds ensure that bottles are not left
in a corner, but are pushed towards the “ideal” fastest belt, if there is space. The intuition behind the model can be best described in terms of three fundamental concepts and four “behaviour rules”, each of which is first introduced informally and then turned into equations. One of the problems to be solved stems from the fact that a local machine model in isolation cannot determine whether an actual input flow at time t and, hence, cannot become part of the buffered output objects. If it entered earlier, it may or may not have already left the output before t, depending on how the actual output flow at time t reduced by the minimal transportation time.

One should be aware that in the second case, each single object may (potentially) leave the output with the speed vout. However, if the input flow at the time when it entered was lower, there will be a gap occurring after the output of the object, which makes the (average) flow lower than vout.

As a special case, the potential output flow becomes zero, if B0 is zero, which implies that the actual input flow was zero at the respective shifted time.

Again, the respective equation 3 in Table I formalizes this. Computing Bout also involves the minimal transportation time τd. If an object entered the transportation element later than time t - τd, it cannot possibly reach the output at time t and, hence, cannot become part of the buffered output objects. If it entered earlier, it may or may not have already left the output before t, depending on how the actual output flow reduced Bout. This consideration is captured by rule 4.

Rule 4. The change in the number of buffered output objects at time t is determined by the actual input flow at time t - τd diminished by the actual output flow at time t.

Hence, Bout is also obtained by integration according to equation 4, which completes the model of the transportation element with buffer. Note, that Bout is not necessarily the number of objects that form a contiguous pile in front of the output. It could be less, because the last objects that joined the pile entered later than t - τd.

Other model elements

Another class of machines produces an output by combining objects of different kinds, as for instance the packaging of 20 bottles in a crate. The ratio of the number of different objects participating in this combination is usually not arbitrary, but is specified exactly. This ratio links the various potential and actual inflows and the output, which is then limited by the “slowest” input flow (relative to the ratio of the respective object type).
The counterpart to this very generic combination element is the separation element, with unpackers being a subclass, in which the slowest actual outflow of a decomposition result limits the potential inflow of the composite object.

For connection of the various elements, the virtual component transportation connector was modelled. The transportation connector links the potential and actual flows of two elements.

Rule TC. The actual output flow of a machine is limited by both its own potential output flow and the potential input flow of the following machine (and equal to the actual input flow of this machine).

This set of fairly generic model types covers most of the variety of machines in a bottling plant and, more generally, also in many food packaging plants.

Model-based diagnosis algorithm

Figure 4 shows the general architecture, modules, and information flow of the diagnosis solution, which exploits the component models presented above. First, the Symptom Scanner requests the Data Interpreter to check for the presence of a set of symptoms in a certain time period. Then, the Data Interpreter takes the request to search for evidence for these symptoms (or certain features) in a standardized database, and returns all time periods for a confirmed symptom (or feature), a negative result or some undecided status. Whenever a symptom (or feature) has been detected, it is passed, along with temporal information, to Diagnosis. Then, Diagnosis generates fault hypotheses that could explain a symptom. It does so by searching the database for evidence or refuting information in terms of status data of the various machines indicating either a local disturbance or the effect of a propagated one (lack or tailback) in an appropriate time window. This means that a valid fault hypothesis must be consistent with the model, the symptom to be explained, and the retrieved data.

The quality of the diagnosis result depends on the database. If there are missing data, for example, due to a communication failure of a machine, the diagnosis algorithm may find several fault hypotheses that are compliant to the data (but returns only one of them in the current version of the tool).

RESULTS

Validation of the base model

In order to validate the component models described above, they were implemented as numerical simulation models in MATLAB/SIMULINK® and the simulated behaviour (using the solver “ode4” (Runge-Kutta) compared with a fixed-step size of one second with a working industrial plant.

Every component was modelled using the equations introduced above and tested in isolation to confirm if adequate and stated in a context-independent manner, which is a prerequisite for compositionality. In a second step, a model of a complete plant was configured using the validated components.

In testing the individual components, values of single parameters and variables were varied, and the response of the simulated behaviour was monitored. For example, the predicted changes in the buffered material B of a component for different values of the input speed v_{in} and the output speed v_{out} are shown in Fig. 5. It depicts that the buffer fills as long as the input speed is higher than the output.
higher than v_{out}, the buffer filling degree remains constant. Because of the minimal transportation time, t_p, of the component, the buffer is not completely emptied, as long as there is input available. Furthermore, only the objects represented by the variable B_{in} determine the existence of an output flow. Another real characteristic behaviour can be reproduced when increasing the input speed, while maintaining the output speed constant. Although v_{in} is still higher than v_{out}, the buffer filling degree remains constant after a certain time, because it is limited by the maximum capacity of the component.

Similar results were achieved by testing the other component type models, providing evidence that the models capture the features relevant to the diagnostic task and do not violate context-independence.

The second challenge was validation by comparing the simulated behaviour of a plant model with the behaviour of an actual plant. Several test cases were constructed, based on real-world downtime scenarios of the bottling plant whose topology is shown in Fig. 1.

The simulated plant consists of a primary flow of bottles and a secondary object flow of crates. In one test case, the downtime propagation of a failure of the crate washer was simulated and analyzed. This failure affected both object flows. After some delay, missing input occurred at the crate packer. Also the unpacker stopped at some point, due to its crate output being blocked. The details of the propagation of the failure depend on the capacities and filling degrees of the various buffers connecting the machines. For instance, if the crate magazine is empty and all other buffers are filled to a sufficient degree, the lack of crates will rapidly reach the crate packer. This causes a blockage of the labelling machine and the bottle filler (because the packer is not able to process the bottles) before the lack of bottles in the primary flow (caused by the inoperable unpacker) reaches the filling machine. In contrast, if the crate magazine is completely full, the crate packer keeps working for some time, and the filling machine will be stopped due to a lack of bottles.

Even for this complex scenario, the simulation model reproduced the behaviour of the real world plant. Similarly, the characteristics of fault propagation occurring in real plants were predicted for other relevant scenarios.

Experimental results

To measure the quality of the automatic model-based diagnosis, different bottling plants were observed for a total of six days and reasons for downtimes were identified manually. During this period, the bottle filler stopped operating 413 times. Of these stoppages, 256 were caused by problems in the filler itself and 159 by lack or tailback as an impact of other failing components.

The quality (correctness) of diagnosis is defined as the ratio of right diagnosis (compliance between manual and automatic diagnosis) compared to the number of downtimes. A quality of 96% on the period was determined. If only nontrivial cases (lack and tailback) are considered, the quality was still 89% (Table II).

DISCUSSION AND OUTLOOK

The model-based diagnosis algorithm was implemented in a demonstrator application which allowed analysis of downtimes of a bottling plant. This was tested at the plants of industrial project partners. The diagnosis tool (Fig. 6) localizes the machines causing downtime of the filler within certain time periods, which can be specified by the user. As practitioners approved, the achieved result supports plant operators and supervisors in identifying critical points of the bottling plant and in explaining downtime losses and some speed losses (Fig. 2).

The correctness of the diagnosis suffices to make it a useful tool in practice. Wrong diagnosis results were often caused by faults in the database, inexact manual downtime analysis or plant-specific critical points that were too difficult to find automatically (missing observation data for the specific problem).

LineMod exclusively considers reasons for filler downtimes and only those within the plant and, thus, has a number of limitations as follows.

- LineMod focused on “hard” failures (stop of bottling filler) caused by hard faults, which can be based on distinguishing zero from non-zero flow only. For capturing “soft” faults (e.g., reduced output) which lead, perhaps in combination, to a hard failure or a suboptimal behaviour, a different model is required.
- Many efficiency losses are not caused by technical components, but rather by logistic processes downstream or upstream of the plant. To analyse such situations, the plant model needs to be extended.
- Sometimes, machine downtimes could not be assigned to the actual cause, because a machine treated objects incorrectly (e.g., improper cleaning of dirty bottles). The effect of the defective treatment may become evident only after some time period at another machine (e.g., the empty bottle inspector, which will reject a

Table II. Experimental validation of the diagnosis correctness.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtime</td>
<td>109</td>
<td>22</td>
<td>86</td>
<td>29</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Caused by filler</td>
<td>34</td>
<td>5</td>
<td>57</td>
<td>26</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Lack</td>
<td>21</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Tailback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model based</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compliance</td>
<td>160</td>
<td>28</td>
<td>140</td>
<td>69</td>
<td>397</td>
<td>96%</td>
</tr>
<tr>
<td>no compliance</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>18</td>
<td>4%</td>
</tr>
<tr>
<td>Non trivial cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>compliance</td>
<td>51</td>
<td>6</td>
<td>54</td>
<td>30</td>
<td>141</td>
<td>89%</td>
</tr>
<tr>
<td>no compliance</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>18</td>
<td>11%</td>
</tr>
</tbody>
</table>
large number of bottles, thus potentially reducing the available input to the filler). The impact of the process steps on the objects is not included in the LineMod model, which prevents the algorithm from identifying the real downtime cause.

- Filler downtimes are often caused by a combination of disturbances of different machines. In such situations, the diagnosis has to generate more sophisticated fault hypotheses.

To address these additional challenges, a follow-up research project called LineMET (Model-based efficiency analysis tool for complex and interconnected filling and packaging lines) has been started. In this project, the system mode will be extended and the diagnosis algorithm optimized. This project was started in June 2009 and first results have been published6.

REFERENCES

(Manuscript accepted for publication November 2010)